
Manual No. 50331443, Rev. 01

Scanner Logic IDE

User Manual

IMPORTANT INFORMATION

Terms Used in This Manual

IMPORTANT Indicates actions or procedures which may affect instrument operation or may lead to
an instrument response which is not planned.

Note Indicates actions or procedures which may affect instrument operation or may lead to
an instrument response which is not planned.

Tip Provides extra information about using the program.

*Mark of Schlumberger.
Other company, product, and service names are the properties of their respective owners.
Copyright © 2017 Schlumberger Limited.

All Rights Reserved.
Manual No 50331443, Rev. 01

December 2017

Scanner Logic IDE Table of Contents

iii

Table of Contents

Section 1—Introduction ... 5
About the Scanner Logic IDE ... 5
Downloading and Installing Scanner Logic IDE ... 5

Installation Requirements... 5

Section 2—Navigating the Interface ... 7
Overview ... 7
IDE Layout .. 7

Program Information .. 9
Resources .. 9
Registers .. 12
User HMI Fields ... 13
Results Section .. 15

Menu Structure ... 15
Toolbars ... 16

Document Outline ... 16
Status Bar ... 17
The Editor ... 17

Starting A New Script File .. 17
Saving a Script File .. 19
Opening a Script File .. 20
File Auto Recovery ... 20
Program Structure .. 20
Editor Tools and Features .. 21

Scanner Logic Script Compiler ... 27
Target Platform .. 27
Compiling a Scanner Logic Program ... 28
Logic Script Error Types... 30

Section 3—Managing Device Connections.. 37
Creating a New Connection with IP Address and Port Known .. 37
Creating a New Connection with Unknown IP Address ... 38
Removing Device Connection(s) ... 39

Installing a Scanner Logic Program on a Scanner ... 40
Uploading a Program to a Scanner via the IDE ... 41
Uploading a Program to a Scanner via the Web Interface .. 41
Downloading a Program from a Scanner via the IDE .. 43
Downloading a Program from a Scanner via the Web Interface.. 43
Uninstalling a Program from the Scanner via the IDE ... 44
Uninstalling a Program from the Scanner via the Web Interface ... 45

Section 4—Using the Program .. 47
Script Terminology .. 47
TUTORIAL: Creating a Simple Program .. 47

Problem .. 47
Coding the Program ... 54

Section 5—Debugging Scripts .. 71
Starting a Debug Session ... 71

Table of Contents Scanner Logic IDE

iv

Reviewing Device Connections ... 71
Selecting Target Platform and Device Connection .. 71
Debug Session Start Sequence ... 72
Script Execution Status .. 74
Watch Tree ... 74
System Load Charts ... 75
Debug Status Bar ... 76
Stepping through Program Code ... 77
Debug Commands ... 77
Breakpoints .. 78
Stop Debugging ... 79

Appendix A—Other Programs .. 81
Downloading and Installing ScanFlash .. 81

Appendix B—Sample Program Solution .. 83

Appendix C—Parser Error Messages ... 91

Appendix D—Runtime Error Codes .. 95

Scanner Logic IDE Section 1

5

SECTION 1—INTRODUCTION
ABOUT THE SCANNER LOGIC IDE
The Scanner Logic Integrated Development Environment (IDE) allows you to create a script file
(SLOGIC file), compile it into a binary program file (SLBIN file), and upload the program to Scanner
3100 devices. Additionally, you can debug operations in the IDE using a graphical format, showing
you immediate and upcoming script sections to be debugged. Coupled with the Scanner 3100, the
IDE allows users to experience the Scanner’s full potential as an automated logic controller.

The programming language used by the IDE is a high-level procedural language designed to build
logic controller programs. In this way, the program resembles a state machine. The programming
language elements are intentionally limited to a subset of features common to general purpose
programming languages. “Helper” forms – dialogs attached to buttons to guide your selections –
enable users to build programs successfully with minimal knowledge of the programming language.
This makes the Scanner Logic IDE easy to learn and use. The binary (SLBIN) program files are
executed by the Scanner 3100 device without affecting other device programming, thereby ensuring
the metrological integrity of the Scanner 3100.

Note This manual provides instruction in the use of the programming interface (IDE) and the
creation of programmable logic control programs executed by the Scanner 3100. For a
detailed description of the programming language, see the Scanner Logic Programmer
Manual, which can be accessed from the Help>Documents menu in the IDE.

DOWNLOADING AND INSTALLING SCANNER LOGIC IDE

Installation Requirements
Before downloading the Scanner Logic IDE, ensure that your system meets the following minimum
requirements:

TABLE 1.1—MINIMUM SYSTEM REQUIREMENTS
System Parameter Requirement(s)

Operating System Windows 7 or later

Computer/Processor 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor

Memory 1 GB RAM (32-bit) or 2 GB RAM (64-bit)

Hard Disk Space 150 MB for program files, adequate space for data files

Display DirectX 9 graphics device with WDDM 1.0 or later driver. Minimum
resolution: 1400 × 1024 pixels.

IMPORTANT Before installing Scanner IDE, verify that you have local administrator rights to the
computer on which the program will be installed. If you do NOT have local
administrator rights or if the installation is blocked, contact your Information
Technology department for assistance.

Section 1 Scanner Logic IDE

6

To download and install the IDE,

1. Access the SCANNER 3100 website at http://www.cameron.slb.com/flowcomputers.
2. Select Scanner Model 3100 Flow Computer.
3. Locate the Scanner Logic IDE under the “Software” heading to the right of the page.
4. Right-click, choose SAVE LINK AS…, and select the location to which you want to store the

file. By default, the file will be saved to C:\USERNAME\Downloads.
5. Browse to the Installation file and double-click to open.
6. Select Setup.exe and run the installation program. By default, the files will be

stored to C:\Cameron Data\Scanner Logic IDE.
7. Click the Scanner Logic IDE desktop icon to begin using the application.

http://www.cameron.slb.com/flowcomputers

Scanner Logic IDE Section 2

7

SECTION 2—NAVIGATING THE INTERFACE
OVERVIEW
The Scanner Logic IDE is designed to create programs that are uploaded to a Scanner 3100. These
programs depend on the Scanner 3100’s inputs/outputs configuration for register names and Modbus
map locations. You can create a program in the IDE without being connected to a Scanner, but
register names and locations can only be populated when connected. For more information about
connecting to the Scanner 3100, see Section 3.

Interface components are presented in the order of recommended use, guiding the user through the
process to create the script (SLOGIC) file that will be compiled into an SLBIN file that can be
executed by the Scanner 3100. References will be made to the Scanner 3100 Web Interface, which is
an web-based bridge between the IDE and the Scanner device. For more detailed information about
the web interface, consult the Scanner 3100 Web Interface User Manual. For reference, we
recommend opening the web interface while scripting.

IDE LAYOUT
Upon opening the Scanner IDE for the first time, the default layout shown in Figure 2.1 will appear.
The tools necessary for viewing, creating, modifying, and debugging scripts are available from the
menu bar and task bar at the top of the screen and the main areas of the screen, including the
following:

• Resources tabs and Results tabs, which provide access to the helper forms used for scripting

• Editor (Figure 2.1).

o Create a new script.

o View and edit an existing script.

• Start Page (Figure 2.2)

o Start a new script or edit a recently-accessed script.

o Access the Scanner Logic Programmer and Scanner Logic IDE user manuals.

o Select and view script examples.

o Access and modify sample applications.

• Device Connections (Figure 3.6).

o Connect to the Scanner 3100 device that will use the Scanner Logic Script program.

Note Each tab in the IDE can be expanded and repositioned (drag and drop) on the fly to maximize
utility. Tabs can also be floated over the screen. To return the IDE to its original layout,
choose View>Restore Default Layout.

Tip Use <CTRL> + <TAB> to cycle through the open panels in the IDE.

Section 2 Scanner Logic IDE

8

Figure 2.1—Default IDE layout after File>New is selected

Figure 2.2—Start Page

Scanner Logic IDE Section 2

9

Program Information
The IDE “Program Information” tab allows you to enter program information that uniquely identifies
the Scanner Logic Script program, the first step to creating a new program. All the program
information entered will be presented in the Scanner web interface. See the Scanner 3100 Web
Interface User Manual for more information.

Tip Take the time to communicate the purpose and strategy of your program in the Program
Description field. The program description contains enough space to give an overview of the
program’s function and can store revision notes as the program evolves.

The Program Information also defines user access levels for features within the Scanner web
interface. Online viewing of the program source code, access to the Program Control webpage, and
ability to edit the values on the User HMI page can be limited or prevented by configuring the
“Access_” parameters:

• nousers. Users are prohibited from viewing and/or editing the program.

• adminusers. Users with Administrator permissions can view and/or edit the program.

• configusers. Users with Configuration Editor permissions (or greater) can view and/or edit the
program.

• maintusers. Users with Calibration Tech permissions (or greater) can view and/or edit the
program.

• allusers. Users with Download Access permissions (or greater) can view and/or edit the
program.

The compiler validates and incorporates the information in the proginfo object into the binary script
(SLBIN) output file. This information appears on the IDE “Program Information” tab, as shown in
Figure 2.3.

Figure 2.3—Program Information tab

Resources

A resource object in the IDE provides an interface to inputs, outputs, and device registers of the
Scanner 3100. Resource objects have user-assigned identifier names and individual index numbers
based on the resource quantity available. Resource objects of the same type are grouped together

Section 2 Scanner Logic IDE

10

within a resource tab. See Table 2.1 for resource types and Table 2.2 for Program Information
Resource Dialog Contents.

Each resource object type has its own set of parameters, properties, and methods, collectively
referred to as object members. Parameters are defined when creating a resource object. Each
parameter setting is guided by the tools in the parameter grids within the IDE. The script author uses
properties and methods to access a resource. The properties contain all the runtime data within a
resource, while the method calls are used to perform resource specific operations. For a complete list
of parameters, properties, and methods for all resources, refer to the Scanner Logic Programmer
Manual.

Note In most places throughout the IDE only the resources declared by the script will be displayed.
The Parameter Grids are an exception, where an undeclared resource is displayed with the
Name “unused.”

TABLE 2.1—RESOURCE DESCRIPTIONS

Resource Type Usage Qty Description
Register Input Input 32 Allows program to read input values from the Scanner

3100 device.

Digital Input Input 6 Maps to the digital input ports of the Scanner 3100 to
allow reading the state of the ports.

Analog PID Output 2 Provides a PID controller object whose output can be
mapped to a Scanner 3100 analog output port.

Digital PID Output 1 Provides a PID controller object whose output can be
mapped to a Scanner 3100 digital valve controller
output.

Digital Outputs Output 6 Provides a digital output proxy object whose output
can be mapped to a Scanner 3100 digital output port

Alarms Output 32 Provides a controllable alarm object that is accessible
by the Scanner 3100 to be used in the same ways as
Scanner 3100 device alarms.

Timers Utility 8 Provides an object that can keep track of the time (in
sec) between and execution of the start and stop
methods.

As an example, the tabbed dialog for Register Inputs includes the information in Table 2.2, as shown
in Figure 2.4.

TABLE 2.2—REGISTER INPUT RESOURCE DIALOG CONTENTS

Column
Header

Type
Code Description

Name A user-provided name for the register item.

Description <str256> A user-provided string describing the register item.

Tagname <tagname> The descriptive string describing the register tag name.

Scanner Logic IDE Section 2

11

Column
Header

Type
Code Description

Tagcode <tagcode> The complete Scanner 3100 register tag descriptor is used source of the
input/output.

Category <category> The unit category of the S3100 input/output source. Must be selected if
the input/output source has a dynamic category, otherwise the category
will be set automatically.

Units <unit> Numerator of the desired measurement unit for the value imported from
the Scanner 3100 register. Also includes the denominator if required for
the specified measurement unit category.

Rate <rate> Rate scalar unit desired for the value imported from the Scanner 3100
register. If the rate is not specified, then the value is interpreted as not
being a rate value.

Figure 2.4—Resource Register Inputs tab

Parameter Grids

The parameter grids (Figure 2.4) that appear for each Resource or Register type are populated by
user entry into the fields and by the document’s parsing in the Editor. The column headers indicate
the parameters associated with the program’s language objects. To edit a row in the parameter grid,
double-click on the row and click Edit.

To copy a row, highlight it and click Duplicate. This feature is enabled if an item is selected and an
unused resource slot is available. The copy will appear in the first unused resource slot. When you
duplicate a row, the entry name will be the original name with an incrementally numbered postfix (e.g.
“StationInletPressure” becomes “StationInletPressure1”).

To remove an entry from the Editor script, select the entry and click Clear. To remove all the entries,
click Clear All.

The position and ordering of items with in the parameter grids are important. Some interfaces of the
Scanner host system only refer to a resource object by its index number. To reposition or regroup the
objects in a parameter grid, click Edit Item Order. To move multiple items at the same time,
<SHIFT>+<CLICK> or <CTRL>+<CLICK> to select a group of items, then drag and drop the items to
the desired position.

Section 2 Scanner Logic IDE

12

Adding and Modifying Resources

To access the different tabs (as shown in Figure 2.4), click on the tab for the desired resource type.
To create a new resource entry, double-click in the first empty row and complete the Edit [Resource
Type] Resource Item # helper form, as shown in Figure 2.5. To modify a resource, click on the
desired row in the parameter grid and click Edit.

Figure 2.5—Edit Register Input Resource helper form

Tip Using your mouse, hover over a “Parameter Settings” field. The type of content that belongs
in the field will be displayed in the “Parameter Hint” field.

Registers
A register is a place in the code where a float value is stored. Some register types allow values to be
passed between the program and the Scanner 3100. In the script, you can assign values to registers
using the Value property or by using the name of the register, since Value is the default property of
registers.

Each register object type has its own set of parameters, properties, and methods (Table 2.3).
Parameters are defined when creating a register object. Use the parameter grid tools to set the
parameters. Properties and methods are used by the script author to access a register. The
properties contain all runtime data within a register, and methods are used to perform register-specific
operations. For a complete list of parameters, properties, and methods, refer to the Scanner Logic
Programmer Manual.

TABLE 2.3—REGISTER DESCRIPTIONS

Register Type Usage Qty Description

Configuration Input 32 Editable on web interface Configuration Registers page. Requires
Configuration Editor access level.

Scanner Logic IDE Section 2

13

Register Type Usage Qty Description

Maintenance Input 32 Editable on web interface Maintenance Registers page. Requires
Calibration Tech access level.

Holding Output 64 Viewable on web interface Holding Registers page. Allows you to
publish register to Scanner systems (archive, display, input source,
etc.).

Accumulation Output 16 Periodic, 64-bit precision data viewable on web interface
Accumulation Registers page. Allows you to publish register to
Scanner systems (archive, display, input source, etc.).

Working Internal 64 Scanner Logic programming language global variables.

Configuration and Maintenance Registers

The Scanner 3100 maintains Configuration and Maintenance register input values in nonvolatile
memory because they are user-configuration values. The values will persist throughout power cycling
of the device or restarting the Scanner Logic IDE after entering the abortState or the failState.

Although they are functionally the same, the Configuration and Maintenance registers differ in the
user account privileges required to modify them on the web interface.

Holding Registers

The Scanner 3100 uses Holding registers to make output values available to systems other than the
logic controller (i.e. archives, display, flow runs, web interface). These output values are not stored in
nonvolatile memory, but are accessible by the Scanner host environment. Because the output values
are not stored in nonvolatile memory, the Holding registers will lose their values if the program is
restarted.

Accumulation Registers

The Scanner 3100 records incremental sums using Accumulation registers. The Scanner 3100
maintains current period and previous period totals (daily, interval, and triggered periods) for the
values in Accumulation registers and stores these results in nonvolatile memory.

Working Registers

There are no user-defined variables in the Scanner Logic programming language. Use Working
registers, which serve as global variables, to store intermediate calculation results or temporary
values. They retain their values as program execution moves between states or in and out of
subroutines.

User HMI Fields
One of the most powerful aspects of the Scanner Logic IDE is the ability to consolidate the program
information and settings needed by the system operator onto a custom human to machine interface
(HMI) page on the Logic Controller HMI Fields page of the web interface. The content of the HMI
Fields page involves configuring a list of up to 64 fields which can be organized by group headings.
Each field is linked to an object property that has been declared within the program. This link allows

Section 2 Scanner Logic IDE

14

the web interface to display the contents of a property to the operator and potentially allow for the
external modification of it.

If an object property linked to a HMI field that has read/write property, the webmodify option is
available when creating the HMI Field. If set, webmodify will allow a web interface user to change the
run-time contents of an object property within the executing Scanner Logic Script. Care must be
exercised by the script author when allowing modification privileges to properties that are actively
being managed by the executing script. Such a scenario could create control conflicts and result in a
program that does not function as intended. Generally, the author should only set the webmodify
option for properties that are not modified within the script.

The Edit Item Order button on the User HMI Fields parameter grid allows users to reorder fields and
insert or delete headers.

To add a new header, click Add New Header. New headers appear at the top of the grid and can be
dragged and dropped to the correct location.

Note Headers cannot be nested. Headers without children are automatically removed
when OK is clicked.

Scanner Logic IDE Section 2

15

To remove a header, select the header to be deleted and click Remove Selected Header. The
header’s children will remain in the grid, but will not be organized under the header.

If the executing script contains User HMI Field definitions, the page displaying the HMI fields will be
the first page loaded when selecting Control>Scanner Logic Controller on the web interface.

Tip A custom HMI page can consolidate all the information and settings for the system operator
onto one landing page of the Scanner 3100 web interface.

Results Section
The Results section of the IDE (Figure 2.1) displays information in three tabs.

Find Results

Find Results displays the results of any Find/Replace queries run on the script.

Error List

The Error List displays parser (real-time), compiler (on “Build” or “Start Debugging”), and runtime
(during debugging) errors detected.

Breakpoints

The Breakpoints tab allows the user to view and manage the breakpoints set by the Editor using
“Toggle Breakpoint,” “Enable All,” “Disable All,” or “Delete All” commands.

MENU STRUCTURE

The IDE menu structure has eight menus. Standard menu items, such as File>Open are intuitive and
will not be addressed in this manual. The table below describes menu items specific to the IDE.

TABLE 2.4—MENU ITEM DESCRIPTIONS

Menu Menu Selection Description
File Recent Documents Select from the most-recently opened files.

Edit Find and Replace Make consistent changes to a text block in the file.

Incremental Search Search script increments from top-to-bottom.

Reverse Incremental Search Search script increments from bottom-to-top.

Mark Line Modifications Mark changes in lines of script.

Show Whitespace View the script with lines inserted between blocks.

Bookmarks Manage bookmarked areas of the file.

Advanced Perform common context-sensitive edit actions on
document.

View “Document Outline” to
“Resources”

Toggle the visibility of the indicated layout item on and off
in the interface.

“Find Results” and “Error
List”

Toggle the visibility of the indicated layout item on and off
in the interface.

Section 2 Scanner Logic IDE

16

Menu Menu Selection Description
View
(Cont’d)

Debug Toggle “Breakpoints,” “Script Execution Status,” “Output,”
and “Watch Tree” options on and off in the interface.

Toolbars Select the toolbars that will appear beneath the menu. See
Toolbars below for more detail.

Restore Default Layout Return the interface to its original layout.
Project Build Compile the script file into a binary program file (SLBIN).

Append Timestamp to
SLBIN

Add a timestamp to the current script file.

Scanner Change Target Platform Change the firmware version for which the script will be
compiled.

Select Device Connection Select the Scanner 3100 device(s) to which you wish to
connect.

Open SLOGIC Open an SLOGIC file from a device connection.
Erase SLBIN Erase an SLBIN file.

Debug Refer to Debug Commands Select tools to use for debugging the script.

Toolbars
From the View>Toolbars menu, you can toggle on/off the File, Edit, Text Edit, Bookmarks, and Print
toolbars.

Figure 2.6—Toolbars

As shown in Figure 2.6, the Target Platform and Device Connection Indicator toolbars are shown by
default with the Build button between the indicators. The Open SLogic, Erase SLBIN, and
Start/Stop Debugging buttons are located to the right of Device Connection Indicator toolbar.

Tip Hover over a toolbar button to view the button’s function.

DOCUMENT OUTLINE
The Document Outline section of the interface shows an outline of the script document. To skip to a
specific place in the script document, click on the appropriate outline item (see Figure 2.1 for location
of the Document Outline).

Scanner Logic IDE Section 2

17

STATUS BAR
The status bar displays the following information:

• IDE version

• Target Platform version

• Debug program state indicator (only visible during Debug mode)

• Scanner program state (identified by color)

o Blue = Program not running

o Green = Program executing normally

o Orange = Program in the Abort state (at breakpoint or halted)

o Red = Program in Fail state (executing or halted)

• Script editor mode - insert mode (INS) or overview mode (OVR)

THE EDITOR
The Editor is a tool for viewing and changing a Scanner Logic Script file. The entire program source
code is contained within a single text-based file and is hosted within the Editor. All other displays
within the IDE (including all grid contents and the Document Outline contents) are driven from the
textual content within the Editor. Any changes made to the grid data by use of the Edit (“helper”)
forms will cause a textual change within the Editor.

The Editor is aware of the context of declaration groups and regions within the Scanner Logic Script
file and applies editing properties based on this context. Regions of text can be collapsed and
expanded. Text managed by the IDE will be blocked out as read-only with a grey background, and
double-clicking within these sections brings linked grids to the foreground of the IDE focus. The
specific behavior applied to each of the script regions by the Editor are described later in this section.

The Editor continuously scans and parses the user’s script file when keystrokes are detected,
highlighting syntax errors as the user types and enabling tools that aid in the auto-completion of
object names and Scanner Logic expressions.

The File actions within the IDE act upon the contents of the Editor.

Starting A New Script File
Selecting File>New will generate a new Scanner Logic Script file within the Editor. The source code
for a Scanner Logic Script program is contained in a single text-based file having a file name ending
with the SLOGIC extension. The new file will contain all the necessary structures and declarations for
a minimum Scanner Logic Script program (Figure 2.7). All the elements within the new template file
are required by the compiler to perform a successful compilation.

Once the new file has been generated in the Editor, the user can begin customizing the script file by
adding resources and registers using the IDE grids as well as typing within the “Program Code,”
“Subroutines,” and “System Declarations” regions.

The newly created file will have the default unassigned file path (“(untitled).slogic”) in editor. A file
cannot be saved with the default name, so only the “Save As” option will be available for saving the
file (selecting Save will trigger Save As).

Section 2 Scanner Logic IDE

18

// ==
// Scanner Logic Script Program
//
// Program Name:
// Program Version: 1.0
// Author:
// Date: 11/14/2017
// Purpose:
//
// ==

program
{

 #region Program Information

 proginfo
 {
 ProgramName: "";
 ProgramAuthor: "";
 ProgramOwner: "";
 ProgramVersion: 1.0;
 ProgramCreationDate: "11/14/2017";
 Access_OnlineSource: "allusers";
 Access_OnlineControls: "allusers";
 Access_WriteHMI: "allusers";
 ProgramDescription: "";
 }

 #endregion

 // /)
 // Program Execution - User Tasks and States
 // /)

 task Task1
 {
 initial state State1
 {

 onEnter
 {
 }

 onLoop
 {
 }

 onExit
 {
 }

 } // end state State1

 } // end Task1

 #region System Declarations

 // /)
 // Program Execution - System States
 // /)

 // ->
 // Fail State

Scanner Logic IDE Section 2

19

 // This state is entered when a system error occurs that causes the
 // program to be unable to run. Such causes include a programming
 // error or a system configuration mismatch in register inputs or
 // digital i/o.
 // ->

 failState
 {

 onEnter
 {
 }

 onLoop
 {
 }

 } // end failState

 // --

 // ->
 // Abort State
 // This state is entered when an emergency stop is invoked through
 // the web interface or a special function digital input.
 // ->

 abortState
 {

 onEnter
 {
 }

 onLoop
 {
 }

 } // end abortState

 #endregion

 #region Subroutines

 // ->
 // Declare subroutines within this region
 // ->
 #endregion

} // end program

Figure 2.7—New Scanner Logic program template

Saving a Script File
Select File>Save to save the Editor contents as an existing file or to be prompted to save as a new
file. The Scanner Logic Script program source code is saved as a single text-based file having a
filename ending with the SLOGIC extension. All the program information, resource and register
configurations, and user-created Scanner Logic Script is contained within this single file in text format.

The default location for Scanner Logic script files is C:\Cameron Data\Scanner Logic IDE. If
an alternate folder location is selected when saving a script file, the last used location will be
remembered by the IDE.

Section 2 Scanner Logic IDE

20

The SLOGIC file format is not target dependent and can be compiled later to different target
platforms.

Opening a Script File
Select File>Open to open an SLOGIC file and load it into the Editor.

Once loaded, the Editor will scan and parse the contents of the file to populate the data within the
Document Outline, the Program Information, as well as the Resource and Register grids. Any syntax
or declaration errors discovered in the program source code will be underlined and will appear in the
Error List.

Some elements of a program are declared within regions that allow for the collapsing and expanding
of the text. When a program is first opened, all regions default to the collapsed state.

File Auto Recovery
In the event of an unexpected closure of the Scanner Logic IDE, an auto recovery file is created from
the current contents of the Editor.

The file is stored within the host computer system as “%TEMP%\~AutoRecover.slogic” where
“%TEMP%” is the system-provided location for temporary files.

On the startup of the IDE, a check is performed for the presence of the auto recovery file on the host
system. If detected, the user is prompted to either open the file or discard it. If the user opens the file,
it is like opening a New file template, and will have the default unassigned file path [“(untitled).slogic”]
in editor. As with new files, only the “Save As” option will be available for saving the file.

Program Structure
The content of the Scanner Logic program is organized into five regions. Each of these regions is
detected by the Editor and user-assisting properties are applied to their text. Most of these regions
are collapsible within the Editor, consolidating entire sections of code into a single line to improve
visibility of other code. Some regions maintained by the IDE are read-only and appear with light grey
text background. Generally, the read-only sections can be double-clicked to launch the contextual
grid or dialog used to edit them.

The following sections make up a program and are provided within in the new file template. For a
complete description Scanner Logic program elements, see the Scanner Logic Programmer Manual.

Program Information Region

The “Program Information” region contains the proginfo object declaration. This object holds the
information for identifying the program from within the Scanner web interface.

The region is collapsible within the Editor; however, it is not editable and will be presented with a gray
background. The proginfo is edited by double-clicking the section within the Editor or selecting Edit
on the “Program Information” grid. In this way, the IDE manages the contents of the proginfo
validating user entries within the Edit Program Information dialog.

Program Declarations Region

The “Program Declarations” region contains resources and registers object declaration groups.
These declaration groups contain items for Scanner inputs and outputs, as well as user-declared
registers that will be used within the program.

Scanner Logic IDE Section 2

21

This region is collapsible within the Editor. The object type declarations in this section are not
constructed by the user. Instead, they are managed by the IDE and are read-only in the Editor. If no
object type declarations exist, this section can be omitted from a program. Because the new file
template has no pre-declared resources or register objects, this section is omitted until user-
defined parameters are declared.

The user can add resource and register objects to this section by selecting a row within a
resource or register grid and clicking Edit. Each of the resource and register objects have a
dedicated Edit Item dialog for creating and validating user entries. Once an object declaration has
been added to the region, it can be edited by double-clicking the generated text in the Editor or by
reselecting the row from the object grid.

See the Scanner Logic Programmer Manual for a complete list of resource and register objects.

Program Code Region

The “Program Code” region contains the task declarations; each task declaration contains state
declarations. User code resides in the onEnter, onLoop, and onExit sections of state objects.

This region is not collapsible within the Editor. The “Program Code” region is not managed by the
IDE, and the user is free to declare and fill tasks and states to implement programmable control
solutions.

System Declaration Region

The “System Declaration” region contains abortState and failState declarations. These special
state objects contain the user code that will execute in the event of a user abort signal or a fatal
program error.

This region is collapsible within the Editor. The “System Declaration” region is not managed by the
IDE. The user is free to fill the abortState and failState state objects with custom statements
and expressions to direct the programmable control application into a safe operating state.

Subroutine Region

The “Subroutine” region contains the global subroutine declarations. Subroutines are useful for
consolidating commonly-used code in one location that can be invoked as required.

This region is collapsible within the editor. The “Subroutine” region is not managed by the IDE. The
user is free to declare and fill subroutines to aid the implementation of programmable control
solutions.

Editor Tools and Features

Code Navigation Selectors

The Editor hosts two dropdown selections (see Figure 2.8) which update depending upon where the
cursor is positioned within the program. The left dropdown menu contains names of objects or object
groups, and the right dropdown menu contains names of sub-items of the selected item in the left
menu.

The selected item of each dropdown menu changes to match the object that the cursor is located in.
These symbol selectors also act as navigation tools that advance the cursor to the place in the script
when an item is selected from the dropdown lists.

Section 2 Scanner Logic IDE

22

Figure 2.8—Editor code navigation selectors

Margin Indicators

The Editor’s left margin conveys information about the status of modifications to the user in Edit mode
and in Debug mode.

While in Edit Mode, a colored marker appears to the right of the line number when a line is modified
(Figure 2.9). A green mark indicates that a line was changed and the modification has been applied to
the file during the previous save action. A yellow mark indicates that changes have been made to the
line, but have not been saved.

Figure 2.9—Edit mode modification indications

While in Debug mode, the far-left margin contains colored markers for tracking the debug session
(Figure 2.10). The user can also insert and remove breakpoints in the margins in Debug mode.

The current executing line is indicated with a yellow arrow. If the program is activily running, the arrow
will relocate to the current execution line every second. If the program is halted, performing a step
execution will immediately relocate the yellow arrow to the new line.

If a breakpoint has been inserted on a program line, the editor will place a red circle in the margin and
highlight the statement or expression where the debugging will stop.

Figure 2.10—Debug mode execution and breakpoint indicators

Scanner Logic IDE Section 2

23

To insert or remove a breakpoint, left-click within the debug margin or the line in which the action is
desired. For more details, see Breakpoints.

The Editor “Collapse/Expand” region appears to the right of the line numbers (Figure 2.11).
Collapsible regions are indicated with a minus sign and a box around the region name. Expandable
regions are indicated with a plus sign and the expanded area will appear on a grey background.

Figure 2.11—Editor collapsible region controls

Edit Functions

The Editor supports standard text editor functions, such as Undo, Redo, Cut, Copy, Paste, Delete,
Find, Replace, and Select All.

To select the text to be edited, you can use your mouse or keyboard. The Editor also supports a text
block selection tool. To select text blocks using this tool, simply press and hold the <ALT> key and
click within the editor.

Figure 2.12—Editor text block selection

Syntax Parser

The Editor scans and parses the program file as you type, allowing for real-time error reporting and
for the identification of new regions, objects, statements, and expressions. Any errors detected within
the program body are underlined in red. The Error List will also display the errors found.

Section 2 Scanner Logic IDE

24

Figure 2.13—Editor syntax error underlining

The Syntax Parser allows quick access to an object’s definition from the object name within an
expression or statement. Right-click on the object name and select Go To Definition to jump the
cursor to the Editor definition.

Tip With the cursor placed on an object name, press F12 to view its definition.

Quick Information Tips

To view detailed information about an object, hover the mouse over the object name. The information
will be presented in a Quick Info Tip window. User declaration information, including the user-
provided name and description, and a description of the general function of the object is provided.

Figure 2.14—Editor Quick Info Tips for objects

Hover over the associated property or method member of an object to display the information about
the owner of the member and a description of the member or property purpose.

Figure 2.15—Editor Quick Info Tips for object members

Auto-Completion Lists

In the Editor, an auto-completion feature assists you in choosing keywords and identifiers quickly, and
can also automatically complete partially typed identifiers. Simply press <CTRL>+<SPACE> to

Scanner Logic IDE Section 2

25

activate the auto-completion tool. Other actions that trigger the Auto Completion list to open are the
following:

• Typing text after a math operator symbol

• Typing text after an assignment operator

• Typing text after an open parenthesis

Figure 2.16—Editor auto-completion lists

Use the <UP ARROW> and <DOWN ARROW> to scroll through and highlight items from the auto-
completion list. Whether contained within items or at the start of items, the typed text will
incrementally search and filter the completion list without case sensitivity. As each item in the list is
highlighted, Quick Info Text will appear to aid the user in selecting an appropriate item. Double-click
the desired selection to automatically replace the text. Other actions that will trigger replacement of
text include:

• Press <ENTER> to select highlighted item

• Press <SPACE> to select highlighted item

• Press any of the following characters: { } [] () . , : ; + - * / % & | ! = < > ? ' "

If there is only one possible match and an auto-completion list is not open, place the cursor inside a
partially-typed word and press <CTRL>+<SPACE> to automatically complete the word without
opening the list.

Member Lists

When an object’s text identifier plus a “.” (dot operator) has been typed into the Editor, the Member
List will appear. This list will initially contain all property and method members of an object. Whether
at the start of items or contained within items, typed text will incrementally search and filter the
Member List, regardless of text case. As each member in the list is highlighted, the item’s Quick Info
Text will appear to help the user select the appropriate item. Double-click the desired selection to
automatically insert the text. The following actions will also select the highlighted item and
automatically insert the existing text:

• Double-click entry in list

• Press <ENTER> to select highlighted item

• Press <SPACE> to select highlighted item

• Press any of the following characters: { } [] () . , : ; + - * / % & | ! = < > ? ' "

Section 2 Scanner Logic IDE

26

Within the list, an object’s properties are indicated with a wrench glyph and its methods are indicated
by a cube glyph.

Figure 2.17—Member list

Vertical Split

Multiple sections of a program can be viewed within the Editor by using a split partition tool. When the
Vertical Split partition is hidden (default), the vertical split handle will appear as a small shaded box
just above the top arrow of the Editor scroll bar, as shown in Figure 2.18. Slide the vertical split line
down to view two scrollable partitions.

Figure 2.18—Editor hidden vertical split handle

By dragging this handle, you can create a custom view of two locations in the program, each of which
are editable.

When the vertical split partition is in view (Figure 2.19), grab and drag the partition to adjust the view.
To remove the vertical split view, return the partition to the top of the Editor.

Figure 2.19—Editor vertical split view

Scanner Logic IDE Section 2

27

SCANNER LOGIC SCRIPT COMPILER
The Scanner Logic Compiler is a part of the Scanner Logic IDE. The compiler transforms the user-
created Scanner Logic script file (SLOGIC, the source code) into a form usable by the Scanner
(SLBIN, the object code). This process involves preprocessing, lexical analysis, parsing, and
semantic analysis (syntax-directed translation). The Scanner Logic program source code is
essentially broken down by the compiler and reconstructed with simple low-level commands in binary
form for the Scanner to execute.

The compiled object code (SLBIN file) is packaged with system information and stored in a file format
which can be installed on the Scanner. An SLBIN file must be created for use by a specific Scanner
target platform.

Target Platform
The compiler target platform is defined by the combination of the Scanner model and the firmware
version of the device for which you are compiling the SLBIN file. A Scanner will only validate and
execute an SLBIN created specifically for its target platform.

The Device Connections dialog can be used to discover the required target platform for a connected
Scanner. If a device can be found after clicking Refresh All, the device model and firmware version
will be displayed under the device information columns. See Section 3 for instructions on how to
create a device connection.

The IDE will include a list of supported target platforms. If your installation does not support your
required target platform, an IDE software update is required. For IDE software updates, go to
http://www.cameron.slb.com/flowcomputers, select Scanner 3100 Flow Computer and locate the
“Software” section in the right column. To install, right-click on the desired software, choose Save
Link As… and select the desired location for the installation file. Clicking on the software name will
download the installer to C:\\Users\Username\Downloads.

Note Currently, Scanner 3100 is the only model supported by the Scanner Logic IDE.

Changing the Target Platform

The target platform must be selected before compilation. To change the target platform, choose
Scanner>Change Target Platform. From the Change Target Platform dialog (Figure 2.20), select
the device model and firmware version. Click OK to load the new target platform to the IDE.

Figure 2.20—Change Target Platform dialog

http://www.cameron.slb.com/flowcomputers

Section 2 Scanner Logic IDE

28

The Target Platform Selection tool can be used to select a platform from a list of recently-selected
target platforms, as shown in Figure 2.21.

Figure 2.21—Target Platform Selection tool

Target Platform Properties

When a target platform is selected in the IDE, several properties of the IDE environment are also
changed. For each target platform on a user system, the following properties are persistent and will
be restored when a target platform is selected.

• Edit Windows Layout. Any customization of the position of the windows, grids, and tools made
while in the Edit mode will be stored.

• Debug Windows Layout. Any customization of the position of the windows, grids, and
debugging tools made while in the Debug mode will be stored.

• Language Parser. A target platform may contain expanded Scanner Logic capabilities and
features.

• Device Capacity. A new Scanner target platform may have expanded resource or register
objects lists available. This may include increased number of existing objects available or added
object types.

If a target platform is selected for the first time on a Scanner Logic IDE installation, windows layouts
and options will be at their defaults.

Compiling a Scanner Logic Program
To compile a script loaded into the Editor, select Project>Build on the menu bar.

Building a program primarily consists of compiling the Scanner Logic script (SLOGIC, the source
code) and creating the SLBIN output file (object) for the selected target platform.

Program Build Process

The IDE will start the following sequence of actions to build a program:

1. A save of any unsaved changes to the Scanner Logic Script open in the Editor.

2. A scan for any present parsing errors. Any syntax errors still present in the script file (e.g.
typos, syntax errors, etc.) will terminate this process. User will be notified that the build was
unsuccessful (Figure 2.22) and the Error List grid will be updated with parser errors.

Compiler is invoked to produce an SLBIN file. Errors can occur during this compilation process and
are described later in this section. If a compiler error is detected, the build is terminated and the Error
List grid will be updated with the compiler errors.

Scanner Logic IDE Section 2

29

3. The SLBIN file is stored in the folder that holds the script (SLOGIC) file. The output file is
automatically named with the following format.

<Name_Of_slogic_file>_<DeviceModel>_<Firmware x1000>.slbin.

If any “.” characters exist in the user SLOGIC file name, they will be replaced with the “_”
character.

If the file already exists in the target working directory, it will be overwritten. If this is not desirable,
enable the option to append a time stamp to the output file name. This option is enabled from the
menu Project>Append TimeStamp to SLBIN. A time stamp with the form
“_YYYYMMDD_HHMMSS” will be added to the name produced above.

4. A build message displaying the complete file path and name of the produced file will appear
(Figure 2.23).

Figure 2.22—Unsuccessful Build message

Figure 2.23—Successful Build message

The SLBIN File Format

The SLBIN file format is a packed collection of many binary parts. The Scanner flow computer will
evaluate a SLBIN file for both integrity and authenticity before executing of the Scanner Logic
program.

The following binary parts make up the SLBIN file:

• Program Description. All program information including the description provided by the program
author. This information is available in the Scanner 3100 web interface at Control>Scanner
Logic Controller>Program Info.

• Object Tables. All details of the user’s resource and register objects usage, including all display
formatting information used by the web interface.

• Execution Tables. All low-level object code for tasks, states, and subroutines executed by the
Scanner.

• Source Code. A compressed copy of the original Scanner Logic file (SLOGIC) that enables the
downloading of the source code from a Scanner that is already executing a SLBIN.

Section 2 Scanner Logic IDE

30

The source code can be viewed on the Scanner 3100 web Interface by a user with sufficient
access permissions. A link to open a new webpage containing the user source code is located at
Control>Scanner Logic Controller>Status and is labeled “Program Source Code.”

• Program Report. A detailed listing of all resources used by a Scanner Logic program. For some
Scanner interfaces, such as a Modbus serial protocol interface, the user names for objects are
not available. For these device interfaces, the Scanner Logic resources are referenced by an
index number. All these indexes are available in the Program Report.

The Program Report can be viewed by the user on the web interface. To open a new webpage
containing the Program Report, select Control>Scanner Logic Controller>Status and is
labeled “Program Reference Report.”

Logic Script Error Types

Parser Errors
As you type program code, the Scanner Logic language parser runs continuously in the background
and attempts to recognize coding structures, keywords, operations, and identifiers in your code.
When the parser cannot interpret the code because of syntax errors, incomplete or erroneous code
structures, or typographical errors, it reports parser errors to the Error List panel. The errors include a
message describing the problem and show the associated line number and column number of the
error location. Double-clicking on an error will move the text cursor to the corresponding location of
the error. At this location, there will be one or more words underlined in red indicating the source of
the error. Hover the cursor over the underlined text to view the error message. The same error
message is displayed in the Error List.

Appendix C contains a list of parser error messages that you may encounter. These errors are
generally the result of coding mistakes. Correct the mistakes indicated, and the error messages will
disappear when the code is reparsed. Refer to the Scanner Logic Programmer Manual if necessary.

Compiler Errors

Compiler errors may be detected when you attempt to compile the program. This error category
relates to the content and structure of the binary output file (SLBIN) that is generated by the compile
process. There are limits to the size of internal sections of the file, as well as restrictions intended to
preserve the integrity of the metrological functions of the Scanner 3100. The Scanner Logic program
is not allowed to exceed safe boundaries on size, stack memory usage, and CPU time slice usage.
The goal is that the primary functions of the device will not be interrupted or corrupted, no matter what
happens within the logic controller functional module.

When a compiler error occurs, no binary output file is generated. The errors must be resolved before
the script file can be compiled successfully. The following compiler errors may be encountered.

TABLE 2.5—COMPILER ERRORS

Error Description
Unable to compile script. Reduce code
complexity by splitting statements with
large numbers of operations into separate
statements.

This error can occur when mathematical statements of
extraordinary length are written with numerous terms,
functions, or nested operations. Resolve the error by
splitting the large statements into multiple smaller
statements and combine the results together.

Scanner Logic IDE Section 2

31

Error Description
Maximum line count of 65536 exceeded. Programs with many blank lines or many comment

lines may become extremely long. Line numbers are
embedded within the compiled binary code to allow
the integrated debugger to correlate execution point
with locations within the source code. For efficiency,
the line number is limited to a 16-bit number. Resolve
the problem by deleting blank lines, or consolidating
multiple lines of comments or code into fewer lines.

Missing ProgInfoDeclaration node. The compiler uses the information in the proginfo
declaration block to embed into the binary output file.
This error occurs if the block is missing. This situation
could only occur if the program file has been edited
outside of the IDE, and the proginfo block has been
corrupted or deleted. Refer to the Scanner Logic
Programmer Manual for the correct format of this
block. Resolve the error by reversing the editing of the
file, or retrieving a back-up copy of the program file.

Missing TaskDeclarationSection node or
TaskDeclaration nodes.

This error occurs if all the tasks have been deleted from
the file. At least one task must be declared, containing
at least one state. Resolve the error by reversing the
deletion of the task code.

UserSelections INC object size (xxx)
exceeds maximum limit of 64KB.

The binary slbin file contains various sections. The
UserSelections section provides information that the
web interface uses to construct the Logic Controller
screens. The space allocated for this information is
limited, and contains the user-entered descriptions for
all objects, including resource objects, registers
objects, and HMI field objects. There are also entries
for each of the declared tasks, states, and subroutines.
The information from the Program Information block is
also embedded in this section, which includes the
Program Description field. If this object should ever
exceed the maximum space allocated for it, you can
attempt to resolve the error by reducing the length of
the Program Description and user-entered item
descriptions.

Section 2 Scanner Logic IDE

32

Error Description
SourceFileZip INC object size (xxx) exceeds
maximum limit of 256KB.

The content of the original slogic source file is included
within the binary slbin file as a compressed object, so
that the program can be extracted by the IDE from a
Scanner 3100. If the compressed source code should
ever exceed the maximum space allocated for it,
resolve the error by reducing the size of the source
code, including the user-entered descriptions and the
comments within the file.

SourceListingHTML INC object size (xxx)
exceeds maximum limit of 256KB.

An HTML rendered copy of the contents of the original
slogic source file is included within the binary slbin file,
with fonts, spacing, and coloring preserved to match
the appearance of the code within the IDE editor
window. It can be viewed via the web interface if
access permissions have been set to allow it. If the
HTML version of the source code listing should ever
exceed the maximum space allocated for it, resolve the
error by reducing the size of the source code, including
the user-entered descriptions and the comments
within the file.

ProgramReportHTML INC object size (xxx)
exceeds maximum limit of 256KB.

The Program Report is an HTML file that is available to
be viewed from the Logic Controller pages in the web
interface. It lists the objects used in the program along
with their index numbers. It is a useful resource when
reading Logic Controller related data from the Scanner
3100 via Modbus, to determine which numbered
registers to read to obtain the desired values. If this
report should ever exceed the maximum space
allocated for it, resolve the error by reducing the length
of user-entered descriptions. In extreme cases, you
may need to reduce the number of objects used in the
program.

Scanner Logic IDE Section 2

33

Error Description
The code in an execution path starting in
State1 exceeds maximum allowed
execution time (detected: 28.564,
maximum: 20.0). Distribute your code
over additional states to reduce execution
demand per second.

The script execution engine in the Scanner 3100
executes the Scanner Logic Script program code in a
once per second cycle. Typically, the execution cycle
will begin at the top of an onLoop block of a state, and
will proceed until either the bottom of the onLoop
block is reached or a transition to another state occurs.
If the latter case occurs, the onExit block of the current
state is executed, then the onEnter block of the new
state is executed, and then the execution cycle ends. At
the next one second cycle, the execution begins at the
top of the onLoop block of the new state. Depending
upon how the program is written and how many
different states there are, there can be many different
code execution paths that could occur in any given
script execution cycle.

The time that it takes to execute the code in any cycle
must fit within a small slice of one second to preserve
the integrity of the Scanner 3100 real time operations.
The amount of time that any code path can take is
analyzed by the compiler and if any of the paths takes
longer than the maximum execution cycle time, a
compiler error is generated. In other words, too much
code is being put into the onEnter/onLoop/onExit
blocks of one or more states. Since a code path may
include a transition to another state, the total amount
of code starting from the onLoop block of the first
state, including the onExit block of that state, and
ending in the onEnter block of the new state, including
the code in any subroutines called along the way,
needs to be considered. Resolve this error by changing
the design of your program to reduce the amount of
code to execute, or by splitting the code among more
states, effectively spreading the execution time for the
code over more execution cycles.

Section 2 Scanner Logic IDE

34

Error Description
The code in an execution path starting in
State1 exceeds maximum allowed device
stack depth (detected: 1002, maximum:
992). Avoid overly complex statements.

The stack is a data structure used by the script
execution engine in the Scanner 3100 to keep track of
intermediate operation results as it runs the program
code. Stack space is a fixed resource, to prevent
programs from compromising the primary operations
of the Scanner 3100 by using up excessive amounts of
memory. Complicated mathematical statements can
have many intermediate results that are eventually
combined to produce a single value for the statement.
Each one of these intermediate results use up stack
space. The compiler analyzes the program code and
predicts the stack space usage of all program
statements, and generates a compiler error if the stack
space requirements exceed the maximum allowed.
Resolve this error by splitting overly long and
complicated mathematical statements into separate
smaller calculation statements.

The code in an execution path starting in
State1 exceeds maximum number of
UserEventRecord.CreateEventRecord()
calls (detected: 24, maximum: 20).

Creating an event record with the CreateEventRecord()
method of a UserEventRecord system object requires a
certain amount of system resources in the Scanner
3100. To protect the device from being overburdened
by the total usage of these resources within one script
execution cycle, there is a restriction on the maximum
number of CreateEventRecord() calls that can occur
within any code execution path. A code execution path
is a possible sequence of program code that begins at
the top of the onLoop block of a state and continues
until either the end of that onLoop block if no state
transitions occur. If there is a state transition, the code
execution path flows through the onExit block of the
state, into the onEnter block of the new state and stops
at the end of the onEnter block. Code paths include any
subroutines called along the way. The compiler
analyzes the number of CreateEventRecord() calls
within all possible code paths, and a compiler error is
generated for any code paths that exceed the
maximum number of such calls. Resolve the error by
reducing the number of CreateEventRecord() calls that
occur within one script execution cycle. You may be
able to resolve the problem by adding more states in a
chain to spread out the CreateEventRecord() calls into
separate consecutive execution cycles.

Scanner Logic IDE Section 2

35

Error Description
SLBIN file size (xxx) exceeds maximum
limit of 512KB.

The maximum size for a compiled binary output file is
limited, to restrict the usage of memory resources in
the Scanner 3100. The binary SLBIN file includes
program information, object parameter declarations,
compiled source code, metadata for web interface, a
compressed copy of the original source code, an HTML
rendered copy of the source code for web display, and
a program report for cross-referencing object indexes.
Normal program sizes fall well within the maximum
limit. Typical SLBIN file sizes are 30KB to 60KB. If the
SLBIN file size should ever exceed the maximum
allowed size, attempt to resolve the error by reducing
the amount of comment text or object description text
in the program. If this is not enough to reduce the file
size, you may need to refactor the program to reduce
the number of objects (resource, register, HMI field,
task, state, subroutine) being used.

Runtime Errors

While executing the SLBIN file, the Scanner flow computer analyzes all low-level commands for
correct and legal usage before they are executed. Any errors discovered in the compiled SLBIN
during execution are called runtime errors. If a runtime error occurs, the Scanner web interface will
report this serious and unexpected error. Cameron support should be contacted and provided with
details and the source code (if possible) so that the program can be resolved with an update to the
compiler. Appendix D contains a numeric list and the details of all possible runtime errors.

Section 3 Scanner Logic IDE

36

This page is left blank intentionally.

Scanner Logic IDE Section 3

37

SECTION 3—MANAGING DEVICE CONNECTIONS
Connecting to a Scanner 3100 is a required step for uploading programs, downloading programs, and
starting debug sessions with the Scanner.

Device connections contain all the information needed to contact and communicate with a locally or
remotely installed Scanner, including user account information. To perform actions on a Scanner
using the IDE, the user must have Configuration level or greater security access to the Scanner 3100.

The IDE must connect with a Scanner over a physical Ethernet connection. When connecting to
remotely-installed Scanners, the remote network administrator must ensure that the proper port
forwarding rules are in place to make the device reachable from outside the network.

Creating a New Connection with IP Address and Port Known
If you know the IP address and port address of the Scanner, create a device connection as follows:

1. Click the “Device Connections” tab in the center section of the IDE.
2. Click New from the Device Connections toolbar.
3. Enter the following in the New Device Connection dialog (Figure 3.1):

a. Connection Name—A user-specified name for the connection.
b. IP Address—The IP address of the device to which you are trying to connect. For a local

device, this is the IP address of the device on the local network. For a remotely installed
device, this is the gateway IP address to the remote network.

c. Port Address—The TCP port address of the device to which you are trying to connect.
The Scanner’s logic debug port is always Port 4530. For a remotely installed device,
enter the port number being internally forwarded to the remote IP address on the remote
subnet. A network administrator may need to set up a port forwarding rule in the remote
network router to all the TCP protocol packets to pass through.

d. User Name—The user name for the device to which you are trying to connect. The
provided user account configured with Configuration Access or greater.

e. Password and Verify Password—The password for the device to which you are trying to
connect.

4. Click Verify TCP to determine if the TCP/IP connection can be found at the provided IP
address and port number. See Figure 3.2a and Figure 3.2b for the possible responses. If the
device was not found, check your settings and/or network configuration, and try again.

5. Click OK to exit the Verify TCP dialog.
6. Click OK to apply the New Device Connection settings. If the information you entered is

correct, the device will appear under the “Status: Found” heading. If not, the device will
appear under “Status: Not Found,” which means either (1) the device does not exist on your
network or (2) the device information was entered incorrectly. See Figure 3.3 for an example
of the “Status: Not Found” result. Note that the device information is “Unknown.”

7. To try again, click in the field to the left of the connection name and click Edit, verify the
device’s IP address and Port address, and repeat steps 2 through 4. If the device remains not
found, contact your IT Administrator for assistance.

Section 3 Scanner Logic IDE

38

Figure 3.1—New Device Connection dialog

Figure 3.2a—Device Found Figure 3.2b—Device Not Found

Figure 3.3—New Device Connection, Status: Not Found

Creating a New Connection with Unknown IP Address

To create a device connection to a Scanner 3100 installed on the same local network subnet as the
computer hosting the IDE:

1. Click the “Device Connections” tab in the center section of the IDE.
2. Click Scan Network from the Device Connections toolbar.
3. From the Scan Network dialog (Figure 3.4), click in the box to the left of the device to which

you want to connect and click Add. Repeat this step for each device to which you want to
connect.

4. In the New Device Connection dialog (Figure 3.5), enter the following information.
a. Connection Name—User-specified name for the connection.
b. User Name—The user name for the device to which you are trying to connect. The

provided user account must be configured with Configuration Access or greater.
c. Password and Verify Password—The password for the device to which you are trying to

connect.
5. Click OK to connect to the device, which should now appear on the “Device Connections” tab

in the Main screen, as shown in Figure 3.6.

Scanner Logic IDE Section 3

39

Figure 3.4—Scan Local Device dialog

Figure 3.5—New Device Connection dialog

Figure 3.6—Device Connections tab (device connected)

Removing Device Connection(s)
To remove a connection to a Scanner device,

1. With the Device Connections tab selected and Scanner Connections in view, highlight the
connection to be removed.

2. Click Remove on the Device Connections toolbar.
3. Click OK to verify that you want to delete the connection (Figure 3.7).

Section 3 Scanner Logic IDE

40

Figure 3.7—Remove Device Connection verification dialog (single device)

To remove all device connections,

1. Click Remove All on the Device Connections toolbar.
2. Click OK to verify that you want to delete connections to all devices (Figure 3.8).

Figure 3.8—Remove Device Connection verification dialog (all devices)

INSTALLING A SCANNER LOGIC PROGRAM ON A SCANNER
Before uploading/downloading a program to/from a Scanner, you must select the Scanner connection
with which to communicate. To select a device connection, click on the down arrow in the “Device
Selection Indicator” toolbar. From the Select Device Connection dialog (Figure 3.9), select the device
to which you want to connect.

Figure 3.9—Select Device Connection dialog

Scanner Logic IDE Section 3

41

Uploading a Program to a Scanner via the IDE

Note Uploading a program via the IDE always requires you to compile an SLOGIC script to
an SLBIN file.

To upload an SLBIN program file to the selected Scanner device via the IDE,

1. Open an SLOGIC file in the editor (File>Open).
2. From your IDE screen, choose Debug>Start Debugging. If no parsing or compiler errors

occur, the program is installed.
3. Choose Debug>Stop Debugging to disconnect the IDE. The Scanner will execute the

program once it is release from the Debug mode.
4. From the web interface, verify the program status. See the Web Interface User Manual for

more information.
5. From the web interface, select Controllers>Scanner Logic Controller>Status to view the

results of the debug.

Uploading a Program to a Scanner via the Web Interface

To upload an SLBIN program file to the selected Scanner device via the web interface,

1. Open the web browser of your web-enabled computer, tablet, or phone, and log into the
selected Scanner.

2. Select Administration>General>Installed Files.
3. In the Scanner Logic Script Binary File section, locate the “Install Scanner Logic Script File”

field.
4. Click Browse and select the SLBIN file for the device and firmware to which you are

connected (see Figure 3.10).
5. Click OK in the Select File dialog.
6. Click Submit in the web interface and click OK when the Confirm dialog (Figure 3.11)

appears.

7. When successfully uploaded, the “SLBIN File Status” field will be populated (Figure 3.12).
If an error occurred during the HTTP upload process or if the SLBIN file was not compiled to
the correct target platform, the SLBIN File Status field will be marked as “Failed validation”.

Section 3 Scanner Logic IDE

42

Figure 3.10—Installed User Files web interface page

Figure 3.11—Confirm dialog

Figure 3.12—SLBIN file successfully uploaded

Scanner Logic IDE Section 3

43

Downloading a Program from a Scanner via the IDE
To download the SLOGIC program source file from a selected Scanner device via the IDE,

1. Select the device from which you want to download the file.
2. Choose Scanner>Open SLOGIC from Scanner Connection.
3. Click OK when the “Current document will be replaced” warning appears, as shown in Figure

3.13.

Figure 3.13—“Current document will be replaced” warning

3. The IDE will connect to the Scanner on the selected device connection and retrieve the active
SLOGIC program file. The downloaded Scanner Logic program source code will appear in
the Editor. If desired, the script can be saved as an SLOGIC file on disk.

Downloading a Program from a Scanner via the Web Interface
You can also download the SLBIN file directly from the device via the web interface if the access level
specified by the Access_OnlineSource parameter in the Program Information tab allows sufficient
permissions.

To download an SLBIN program file from the selected Scanner device via the web interface,

1. Open the web browser of a web-enabled computer, tablet, or phone, and log into the selected
Scanner.

2. Navigate to the Administration>General>Installed User Files web page.
3. In the Scanner Logic Script Binary File section, locate the “Installed SLBIN Binary File” field

(Figure 3.14).
4. Right-click on the SLBIN file name and select Save [Link] As… from the popup menu.
5. Browse to the location where the file will be saved.
6. Rename the file to accurately reflect the file contents.
7. Click Save.

Section 3 Scanner Logic IDE

44

Figure 3.14—“Installed SLBIN Binary File” field

Uninstalling a Program from the Scanner via the IDE
To uninstall an SLBIN file from the Scanner via the IDE,

1. Choose Scanner>Erase SLBIN.
2. Click OK when the confirmation dialog (Figure 3.15) appears.

Figure 3.15—“Program on selected device connection will be ERASED” dialog

Scanner Logic IDE Section 3

45

Uninstalling a Program from the Scanner via the Web Interface
To uninstall an SLBIN file from a Scanner via the web interface,

1. Open the web browser of a web-enabled computer, tablet, or phone, and log into the selected
Scanner.

2. Select Administration>General>Installed User Files.
3. In the Scanner Logic Script Binary File section, locate the “Uninstall Scanner Logic Script

Binary File” header (Figure 3.16).
4. Click Uninstall SLBIN File.
5. Click OK when the Confirm dialog appears.

Figure 3.16—Uninstall Scanner Logic Script Binary File

Section 4 Scanner Logic IDE

46

This page is left blank intentionally.

Scanner Logic IDE Section 4

47

SECTION 4—USING THE PROGRAM
SCRIPT TERMINOLOGY
Each script file is comprised of the following items in Table 4.1.

TABLE 4.1—SCRIPT FILE ITEMS

Term Definition
Task A task is a collection of states. In Scanner Logic IDE, each script can contain up to

four tasks, which can run concurrently. Each task has a user-assigned name and
contains at least one state. One state must be specified as the initial state of the
task.

State A state includes groups of statements that are invoked at different times
according to the state machine model. The Logic Controller system in the device
runs the onEnter, onLoop, and onExit statement blocks when necessary to
execute the state machine. Each state has a user-assigned name. A script can
contain up to 96 states, distributed among one to four tasks.

Fail State The Fail State is entered when a system error causes the program to be unable
to run. Programming errors or system configuration errors (for example,
mismatch in register inputs or digital I/O) are the most probable cause of a Fail
State. There is only one Fail State in a script file.

Abort State The Abort State is entered when an emergency stop is invoked via the web
interface or a special function digital input. There is only one Abort State in a
script file.

Subroutine Subroutines are collections of statements invoked by a user-assigned name,
thereby allowing the user to easily reuse the code throughout the program.
Subroutines are in the region at the bottom of the script. They can be called
from any state in any task. Each script can have up to 100 subroutines.

TUTORIAL: CREATING A SIMPLE PROGRAM
This section provides an easy-to-follow tutorial of the start-to-finish development of a program. The
size and scope of this example are limited. This tutorial includes a discussion of the Scanner Logic
IDE and parts of the Scanner 3100 web interface. However, this sample program will not explore the
IDE or the web interface in depth. For detailed information about using the web interface, see the
Scanner 3100 Web Interface Manual.

Problem
We will examine a sample problem that is a simplistic representation of a real-world application. In
our example, we have a main gas flow line with tributary runs feeding in to the main pipe via metering
stations. Our Scanner 3100 is connected to sensors and a flow control valve is installed at one of the
stations. In this example, the subsidiary flow enters the station at its inlet at a higher pressure than
the main flow line, creating a pressure differential which forces flow into the main line at the outlet of

Section 4 Scanner Logic IDE

48

the station. However, the inlet pressure of the flow is not always stable and at times becomes
relatively low compared to the outlet pressure.

We wish to control the flow rate of the gas through the station to keep it constant by actively
controlling the degree of opening of the variable flow control valve. Additionally, when the inlet flow
pressure becomes too low, fluctuations in the pressure at either end of the station may result in a
reversing of the flow, and we want to prevent that by closing the valve when the difference between
the inlet and outlet pressures falls below a certain threshold. We will ignore the parts of the physical
system that might be present to handle the case of the inlet pressure becoming too high.

We will construct a program to control whether the station’s flow is connected (tied in) to the main
flow or closed off (shut in) from it. The program will monitor the differential pressure between the
station inlet and the station outlet, and decide when to open and close the flow control valve
according to the conditions that we have defined. It will report to the system with alarms when it
begins the tie in and shut in phases, and it will maintain and report various calculations. Also, it will
activate a digital output whenever the flow is shut in. The program will set up a PID controller to
actively adjust the opening size of the flow control valve to maintain our desired flow rate when the
station is tied in.

Assumptions

• When the subsidiary flow pressure is too low, a smaller differential pressure exists between the
subsidiary flow and the main flow.

• When a low differential pressure is detected, the system will be notified via an alarm. However,
the condition must persist for a specified time before the alarm becomes active.

• If the low subsidiary line pressure state persists, the valve will be closed to shut in the subsidiary
flow until the pressure level returns to an acceptable level.

• When the pressure differential returns to higher levels for a sustained time, the valve will be
reopened and control of the subsidiary flow rate will resume.

• If the subsidiary flow goes offline, the valve will remain closed for a preset period to allow the
pressure to build up, after which the valve will be reopened.

• The situation where the subsidiary flowline pressure might become too high is not considered for
this example.

Scanner 3100 Inputs/Outputs Setup

For the program to interact with the real world, we will need access to various inputs and outputs
(I/O). We will set these up in the IDE so that the program code can use them. However, the program
does not directly take control of the Scanner 3100 hardware. We must configure Scanner device
inputs to align with how the program expects to use them, and we must assign outputs to follow the
values produced by the program. This model preserves the integrity of the Scanner configuration, and
prevents unexpected disruption to the device setup when a program is uploaded.

We will assume that the Scanner 3100 is appropriately installed and that the following hardware
configuration exists:

TABLE 4.2—HARDWARE DEPLOYMENT

Hardware Location

Scanner 3100 – set up to compute flow using integrated MVT; static
pressure readings from MVT will be used in the program as well

Upstream from flow valve

Flow control valve, wired to Analog Output 1 Downstream from Scanner 3100

Scanner Logic IDE Section 4

49

Hardware Location

Static pressure transducer, wired to Analog Input 1 Downstream from flow valve

External hardware to receive a digital output signal n/a

The Scanner Logic program will not directly modify the Scanner 3100 user configuration. Resource
Validation Errors are reported if the device configuration does not match the configuration required by
the program. For the purposes of this example, we will not perform the required Scanner I/O
configurations. See the Web Interface User Manual for more information about configuring Scanner
I/Os.

Program Design

Scanner Logic programs are expressed as state machine models. It is possible to represent physical
processes using state machines, and there is often more than one state machine design that can fit
the same scenario.

The state machine is operated by the Logic Script execution engine once per second. In an execution
cycle, the code in the onLoop body of the current state in each task is run once. If a transition to a
new state occurs, onExit code will run to perform user-coded finalization actions in the state being
exited. The last step of the execution cycle when a transition happens is the onEnter code will run to
perform user-coded initialization actions in the new state being. The next execution cycle begins in
the onLoop body of the new state. Typically, the code in the onLoop body is concerned with
calculating values and with checking various conditions to determine whether to remain in the current
state or to transition to a different state.

Define States and Transition Conditions
The first step in designing a state machine model is to identify the situations in the process that
persist steadily for periods of time. In our example, these steady states occur when the subsidiary
flow is tied in and when the flow is shut in. We can call these states the Flowing state and the
ShutIn state. States are defined within tasks. Up to four tasks can be defined, but we will only need
one, which we will name StationTieIn.

Next, identify what conditions would cause a transition from one state to another. When the process
is in the Flowing state, we would like the station inlet pressure to be a certain amount higher than the
outlet pressure. We will remain in the Flowing state while this is the case. When the difference
between the inlet and outlet pressures falls below this amount persistently, the program should
change from the Flowing state to the ShutIn state.

Conversely, when the system is in the ShutIn state, a differential pressure level above a specified
threshold lasting for a specified period would trigger a transition back to the Flowing state. There is
an additional constraint on this condition in that the transition back to Flowing cannot occur until a
minimum period has elapsed while in the ShutIn state.

We will make the initial state of the program be the ShutIn state. We will also add a program control
variable that we can configure via the web interface to force the program to enter the ShutIn state
even when the differential pressure is at flowing levels.

Define Input and Output Resources
Scanner Logic provides an AnalogPIDControllerResource object that we can use to control the
flow valve to maintain our desired flow rate while in the Flowing state. It has control variables,
including Kp, Ki, and Kd, that affect how it behaves in adjusting the valve opening when the flow rate

Section 4 Scanner Logic IDE

50

deviates from its set point. The hardware Analog Output port of Scanner 3100 will be configured to
follow the output of programmable logic controller. We will set the PID Controller into automatic
operation mode to seek the target flow rate when we enter the Flowing state. Conversely, we will put
the PID Controller into manual override mode and force the valve closed when we enter the ShutIn
state.

We will use RegisterInputResource objects to access two static pressure inputs from the Scanner
3100, and calculate the differential pressure between the two inputs in code. The upstream or inlet
static pressure will come from the integrated MVT in the Scanner 3100. The downstream or outlet
static pressure will be obtained via a Scanner 3100 Analog Input connected to an external pressure
sensor.

A third RegisterInputResource object can be used to bring in the flow rate coming through the flow
control valve, which is being calculated by the Scanner 3100.

We will use an AlarmResource object to signal the Scanner 3100 of the point at which the station
differential pressure falls below our defined threshold. We can take advantage of the alarm hold-off
feature to provide some hysteresis before transitioning to the ShutIn state. This feature allows us to
ensure that the differential pressure condition is persistent for a certain amount of time before we
transition to the ShutIn state. With a hold-off period configured, we can assert the alarm immediately
when the pressure difference falls below the ShutIn threshold, but the alarm output will not become
active immediately.

If the pressure difference rises above the ShutIn threshold again within the hold-off period, then we
will deassert the alarm, which cancels the hold-off delay. Since the alarm has not become active yet,
the system remains in the Flowing state. However, if the pressure difference stays below the
threshold for the entire hold-off period, the hold-off delay will complete, and the alarm output will then
become active. We will monitor the “IsActive” property of the alarm to trigger the transition from
Flowing to ShutIn, instead of using the pressure difference as the transition condition directly.

We will use a second AlarmResource object in a similar way to “de-bounce” the transition from the
ShutIn state back to the Flowing state, so that transient pressure increases do not cause frequent
transitions.

A DigitalOutputResource object will be used to produce an output signal in the Scanner 3100 that
will indicate that the ShutIn state is active. Since we will have an AlarmResource set up to be active
whenever we are in the ShutIn state, we can use the “FollowAlarm” property of the
DigitalOutputResource to make the state of the Digital Output signal match the “IsActive” property
of the AlarmResource automatically.

We want to remain in the ShutIn state for a stipulated minimum time before we transition back to the
Flowing state. We could use one of the general-purpose TimerResource objects to keep track of the
ShutIn time. However, we will take advantage of the built-in “ActiveTime” property of the state
objects instead. The “ActiveTime” property holds the amount of time that the current state has been
active since it was last entered. We will include a check on the” ActiveTime” in the conditions to
transition from ShutIn to Flowing states.

TABLE 4.3—INPUT AND OUTPUT RESOURCES

Resource Type Purpose Name

Analog PID Control the flow valve opening FlowValveController

Register Input Read in the static pressure at the station inlet StationInletPressure

Register Input Read in the static pressure at the station outlet StationOutletPressure

Scanner Logic IDE Section 4

51

Resource Type Purpose Name

Register Input Read in the flow rate through the station StationFlowRate

Alarm Notify system of transition to Flowing state; provide
hold-off to implement hysteresis

FlowingStartedAlarm

Alarm Notify system of transition to ShutIn state; provide
hold-off to implement hysteresis

ShutInStartedAlarm

Digital Output Indicate to an external system that the ShutIn state is
active

ShutInSignal

Define Input and Output Registers
There are certain variables in the system that we would like to specify and be able to adjust during
the operation of the program. We will create ConfigurationRegister to hold these values.
Configuration registers can be given identifier names, and they automatically appear on the Logic
Controller Configuration Registers page in the web interface to allow users to modify values. These
values are accessible by the program at run time and are used to affect how the program runs without
having to re-compile the program.

TABLE 4.4— CONFIGURATION REGISTERS (USER INPUT VARIABLES)

Purpose Name Initial Value
Minimum differential pressure threshold before
entering ShutIn

MinFlowingDP 200 kPa

Maximum differential pressure threshold before
resuming Flowing

MaxShutInDP 225 kPa

Required minimum time to remain in ShutIn state MinShutInTime 15 min

Control whether program can run freely or be
forced to enter and remain in the ShutIn state (0 =
ShutIn, 1 = run)

ProgramControl 0

Also, we will want to keep track of certain values that are calculated during the operation of the
program and make them available for use by the Scanner 3100 host device and for display on its web
interface. We will use HoldingRegister objects to output these calculated values. The Holding
Register values are available to be viewed on the Logic Controller Holding Registers page in the web
interface, and they can be archived by the Scanner 3100 or used as input values for various device
features.

TABLE 4.5—HOLDING REGISTERS (USER OUTPUT VARIABLES)

Purpose Name Units

Calculated station differential pressure between
inlet and outlet pressures

StationDP kPa

Calculated percentage of time spent in Flowing PercentFlowingTime %

Section 4 Scanner Logic IDE

52

Plan Updating of Calculated Values
We have designated Holding Registers to store values that we will calculate within the program.
These calculations will be done at various times during the operation of the state machine. This is a
good opportunity to use Logic Script Subroutines. We can place all the calculation statements into a
subroutine named CalculateStationValues and call this subroutine at appropriate times. This makes
program debugging and maintenance easier by keeping the calculation code together in one place.

We will call the subroutine at the start of the code within the onEnter and onLoop blocks of both the
Flowing and ShutIn states, so that the calculated values are up to date if we reference the values in
subsequent code statements.

Plan State Entry and Exit Actions
There are certain actions that we would like to ensure take place whenever we enter or exit the
Flowing and ShutIn states. In general, it is a good practice to place code that controls actions or
effects that are dependent on what state the system is in into the onEnter and onExit code blocks.
These blocks will always run when a state transition occurs. Right after a changestate statement is
executed, the script engine runs the onExit block of the current state, and then runs the onEnter block
of the state transitioned into. The execution cycle ends at the bottom of the onEnter block, and code
starts running at the top of the onLoop block of the new state in the next execution cycle. The onExit
block allows you to deactivate or remove an output

We need to manage changes for the FlowingStartedAlarm and ShutInStartedAlarm, so that they
will be up to date with the transitions between states in the system. Note that we will need to initially
assert the ShutInStartedAlarm in the onEnter code of the ShutIn state. Since the ShutIn state is
designated as the initial state of the task, its onEnter code is the first code that executes when the
program is run.

We also want to update calculated values and update the operating mode of FlowValveController.

TABLE 4.6—ENTRY AND EXIT ACTIONS

Item Actions
ShutIn state onEnter • Update calculated values by calling CalculateStationValues()

• Signal that we have entered ShutIn state by asserting
ShutInStartedAlarm

• Set FlowValveController to manual override mode and close
valve

ShutIn state onExit • Signal that we have left ShutIn state by de-asserting
ShutInStartedAlarm

Flowing state onEnter • Update calculated values by calling CalculateStationValues()
• Set FlowValveController to automatic mode, actively seeking

target flow rate

Flowing state onExit • Signal that we have left Flowing state by de-asserting
FlowingStartedAlarm

Define Interface to Program Variables
Scanner Logic provides UserHMIField objects that allow selected properties of objects within the
program to be consolidated into a single list of fields. This list is available to the Scanner 3100 and
can be accessed via a contiguous Modbus read or write, or can be accessed via the Logic Controller
HMI Fields page in the web interface. This allows users to have convenient access to view and

Scanner Logic IDE Section 4

53

modify program-specific variables. If the selected property is read/write, the attached User HMI Field
object has the option to restrict access to read-only. To help organize the fields on the Logic
Controller HMI Fields web page, headers can be defined for User HMI Fields.

We will select some object properties to access via User HMI Fields. These will include the Value
properties of the Configuration Registers and Holding Registers designated above. User changes to
input variables via User HMI Field objects are synchronized to their attached object properties
automatically by Scanner Logic at the start of each execution cycle. Additionally, changes in output
values from attached object properties are synchronized to the User HMI Fields at the end of each
execution cycle.

We will create User HMI Fields for input variables that correspond to properties of selected
AlarmResource, AnalogPIDControllerResource, and ConfigurationRegister objects, and we will
set them to allow modification via the web interface or Modbus. The initial values for these input
variables will be specified by the “Initial_...” declaration parameter corresponding to the selected
property of the referenced objects (for example, Initial_Setpoint, Initial_HoldOffDelay, Intial_Value,
etc.).

We will also create User HMI Field objects for output variables that are read from object properties of
selected AlarmResource, RegisterInputResource, AnalogPIDControllerResource, State, and
HoldingRegister objects. These values kept up to date by the program at run time, and since they
are output variables, they are not editable in the web interface or Modbus.

TABLE 4.7— USER HMI FIELDS

Purpose Property Name
Allow

Modify
Station Tie In Statistics

Total time spent in Flowing state (seconds) StationTieIn.Flowing.TotalActiveTime No

Amount of time since Flowing state entered
(seconds)

StationTieIn.Flowing.ActiveTime No

Total time spent in ShutIn state (seconds) StationTieIn.ShutIn.TotalActiveTime No

Amount of time since ShutIn state entered
(seconds)

StationTieIn.ShutIn.ActiveTime No

Percent of total time spent in Flowing state PercentFlowingTime.Value No

Station Rate and Pressure

Flow rate through station StationFlowRate.Value No

Static pressure at station inlet StationInletPressure.Value No

Static pressure at station outlet StationOutletPressure.Value No

Difference between InletPressure and
OutletPressure

StationDP.Value No

Normalized output of FlowValveController FlowValveController.Output No

Shut In Alarm

Notifies system that ShutIn state has been
entered (1 = Active)

ShutInStartedAlarm.IsActive No

ShutIn alarm active count in hold-off (seconds) ShutInStartedAlarm.HoldOffTime No

Section 4 Scanner Logic IDE

54

Purpose Property Name
Allow

Modify
Configured ShutIn alarm hold-off delay
(seconds)

ShutInStartedAlarm.HoldOffDelay Yes

Flowing Alarm

Notifies system that Flowing state has been
entered (1 = Active)

FlowingStartedAlarm.IsActive No

Flowing alarm active count in hold-off
(seconds)

FlowingStartedAlarm.HoldOffTime No

Configured Flowing alarm hold-off delay
(seconds)

FlowingStartedAlarm.HoldOffDelay Yes

Program Control

0 = hold program in ShutIn state, 1 = run
program normally

ProgramControl.Value Yes

The desired flow rate for the station, controlled
by the flow valve

FlowValveController.Setpoint Yes

Minimum differential pressure threshold for
Flowing state, below which we transition to
ShutIn state

MinFlowingDP.Value Yes

Maximum differential pressure threshold for
ShutIn state, above which we transition to
Flowing state

MaxShutInDP.Value Yes

Required minimum time to remain in ShutIn
state (minutes)

MinShutInTime.Value Yes

Coding the Program

At this point, we have planned the overall structure of our state machine program and we have
defined the resources that we will need, as well as the inputs and outputs of the program. We will now
proceed to declaring the required resources and registers in the IDE, and then entering the program
code.

Adding Program Information

1. Start the Scanner Logic IDE program.
2. Click the File>New menu item. A basic empty template for a program will appear in the Editor

window.
3. Locate the “Program Information” tab.
4. Click Edit, fill in the information shown in Table 4.8, and click OK.

Scanner Logic IDE Section 4

55

TABLE 4.8—PROGRAM INFORMATION

Item Value

Program Name IDE Getting Started Example

Program Author John Smith

Program Owner OilCo Ltd.

Program Version Leave as is.

Program Creation Date Leave as is.

Access_OnlineSource Select “allusers.”

Access_OnlineControls Select “allusers.”

Access_WriteHMI Select “allusers.”

Description
This is a tutorial program for writing a program with the Scanner Logic
Script language in the Scanner Logic IDE.

Adding Register Input Resources

1. Add Static Pressure sources by locating the “Register Inputs” tab, clicking on row 01, and
clicking Edit.

2. Fill in the information according to Table 4.9 and click OK.
3. Repeat the process for rows 02 to 03 using the settings Table 4.10 to Table 4.11.

TABLE 4.9—REGISTER INPUT RESOURCE ITEM 01 (STATION INLET PRESSURE)

Item Value
Name StationInletPressure

Description Line pressure at station inlet, upstream from the flow control valve
(integrated MVT)

Tagname Select: ‘Stat Press: Holding: Inst Reading’

Tagcode Automatically set: ‘m32_FC_IN_2_Holding_InstReading’

Category Automatically set: ‘Static Pressure (gauge)’

Units Select: ‘kPa(g)’

TABLE 4.10—REGISTER INPUT RESOURCE ITEM 02 (STATION OUTLET PRESSURE)

Item Value
Name StationOutletPressure

Description Line pressure at station outlet, downstream from the flow control
valve (pressure transducer)

Tagname Select: ‘Analog 1: Holding: Inst Reading’

Tagcode Automatically set: ‘m32_FC_IN_5_Holding_InstReading’

Section 4 Scanner Logic IDE

56

Item Value
Category Select: ‘Static Pressure (gauge)’

Units Select: ‘kPa(g)’

TABLE 4.11—REGISTER INPUT RESOURCE ITEM 03 (STATION FLOW RATE)

Item Value
Name StationFlowRate

Description Flow rate through station, as limited by flow control valve

Tagname Select: ‘FR1: HAccum: Gas Volume Flow Rate

Tagcode Automatically set:
‘m32_FC_FR_1_HoldingAccum_GasVolumeFlowRate’

Category Select: ‘Gas Volume’

Units Select: ‘m3’

Rate Click the checkbox, select: ‘/sec’

Adding Analog PID Controller

1. Locate the “Analog PID” tab, click on row 01, and click Edit.
2. Fill in the information in Table 4.12 and click OK. Additional fields are on the Primary

Controller tab page.

Note that the properties of PID Controllers used in the program are available to view and
optionally modify on the Logic Controller PID Controllers page in the web interface. The
Webcontrolflags parameter controls which groups of values can be modified on this page.

TABLE 4.12—ANALOG PID CONTROLLER RESOURCE ITEM 01 (FLOW VALVE CONTROLLER)

Item Value
Name FlowValveController

Description Maintains desired flow rate at station by controlling flow valve

PidType Select: ‘simplepid’

Initial_IsAutoMode False

Webcontrolflags Check all checkboxes

ProcessVar Select: ‘FlowRate’

PidAction Select: ‘direct’

Initial_Period 1

Initial_RangeHigh 10.0

Initial_RangeLow 0.0

Initial_SetPoint 7.5

Initial_SetPointTolerance 0.0

Scanner Logic IDE Section 4

57

Item Value
Initial_SetPointDeadBand 1.0

Initial_OverrideValue 0.0

Initial_FailValue 0.0

Initial_Kp 1.0

Initial_Ki 0.0

Initial_Kd 0.0

Adding Alarm Resources

1. Locate the “Alarms” tab, click on row 01, and click Edit.
2. Fill in the information in Table 4.13 and click OK.
3. Click on row 02 and click Edit.
4. Fill in the information in Table 4.14 and click OK.

TABLE 4.13—ALARM RESOURCE ITEM 01 (SHUTIN STARTED ALARM)

Item Value
Name ShutInStartedAlarm

Description Notifies system that ShutIn state has been entered

Initial_IsAsserted true

Initial_HoldOffDelay 30

TABLE 4.14—ALARM RESOURCE ITEM 02 (FLOWING STARTED ALARM)

Item Value
Name FlowingStartedAlarm

Description Notifies system when Flowing state has been entered

Initial_IsAsserted false

Initial_HoldOffDelay 30

Adding Digital Output Resource

1. Locate the “Digital Outputs” tab, click on row 01, and click Edit.
2. Fill in the information in Table 4.15 and click OK.

TABLE 4.15—DIGITAL OUTPUT RESOURCE ITEM 01 (SHUTIN SIGNAL)

Item Value
Name ShutInSignal

Group Leave blank

Description Output signal to indicate that the system is in the ShutIn state

Initial_IsAsserted false

Section 4 Scanner Logic IDE

58

Item Value
Initial_FollowAlarm Select: ‘01:ShutInStartedAlarm’

Initial_Period 2

Initial_Duration 1

Adding Configuration Registers

1. Locate the “Configuration” tab, click on row 01, and click Edit.
2. Fill in the information in Table 4.16 and click OK.
3. Repeat the process for rows 02 to 04 using the settings in Table 4.17 to Table 4.19.

TABLE 4.16—CONFIGURATION REGISTER ITEM 01 (PROGRAM CONTROL)

Item Value
Name ProgramControl

Group Leave blank

Description 0 = hold program in ShutIn state, 1 = run program normally

Category Select: ‘No Units’

Initial_Value 0

TABLE 4.17—CONFIGURATION REGISTER ITEM 02 (MIN FLOWING DP)

Item Value
Name MinFlowingDP

Group Leave blank

Description Minimum differential pressure threshold for Flowing state, below
which we transition to ShutIn state

Category Select: ‘Differential Pressure’

Units Select: ‘kPa’

Initial_Value 200

TABLE 4.18—CONFIGURATION REGISTER ITEM 03 (MAX SHUTIN DP)

Item Value
Name MaxShutInDP

Group Leave blank

Description Maximum differential pressure threshold for ShutIn state, above
which we transition to Flowing state

Category Select: ‘Differential Pressure’

Units Select: ‘kPa’

Initial_Value 225

Scanner Logic IDE Section 4

59

TABLE 4.19—CONFIGURATION REGISTER ITEM 04 (MIN SHUTIN TIME)

Item Value
Name MinShutInTime

Description Required minimum time to remain in ShutIn state (minutes)

Category Select: ‘No Units’

Initial_Value 15

Adding Holding Registers

1. Locate the “Holding” tab, click on row 01, and click Edit.
2. Fill in the information in Table 4.20 and click OK.
3. Click on row 02 and click Edit.
4. Fill in the information in Table 4.21 and click OK.

TABLE 4.20—HOLDING REGISTER ITEM 01 (STATION DP)

Item Value
Name StationDP

Group Leave blank

Description Difference between InletPressure and OutletPressure

Category Select: ‘Differential Pressure’

Units Select: ‘kPa’

Initial_Value 0.0

TABLE 4.21—HOLDING REGISTER ITEM 02 (PERCENT FLOWING TIME)

Item Value
Name PercentFlowingTime

Group Leave blank

Description Percent of total time spent in Flowing state

Category Select: ‘Percent’

Units Select: ‘%’

Initial_Value 0.0

Adding User Program Code in States and Subroutines

A new program template contains one task by default, named Task1, containing an empty state
definition. User written code goes in between the sets of braces for onEnter, onLoop, and onExit.
Each task can have multiple states defined inside it, with one of them marked as the initial state.
When a program starts running, script execution begins at the onEnter block of the initial state of
each task.

Section 4 Scanner Logic IDE

60

Script execution cycles occur once per second. Program execution during an execution cycle
proceeds until either the code in an onEnter block or an onLoop block is completed. In either of these
cases, the program will continue at the start of the onLoop block in the next execution cycle. If a
transition to another state does not occur, the program will remain in the onLoop block of the current
state.

When a transition is triggered, the program will immediately leave the current onLoop block, and run
the onExit code of the current state, run the onEnter code of the new state, and then wait for the next
execution cycle. At that point, the program will continue at the start of the onLoop block of the new
state. Please refer to the Scanner Logic Script Programmer Manual for more information regarding
tasks and states.

Follow the steps below and type in code when directed. We will be moving between different areas of
the program code and adding content in increments. The complete program is listed in an appendix of
this document.

Follow the steps below and type in code when directed. We will be moving between different areas of
the program code and adding content in increments. The complete program is listed in Appendix B of
this document.

1. Find the program code section in the Editor window. See Figure 4.1 for an example.

//
/)
// Program Execution - User Tasks and States
//
/(

task Task1
{
 initial state State1
 {

 onEnter
 {
 }

 onLoop
 {
 }

 onExit
 {
 }

 } // end state State1
} // end Task1

Figure 4.1—Program code region default content

2. Change the identifier Task1 to StationTieIn.
3. Change the identifier State1 to ShutIn. The initial keyword indicates that program

execution for the StationTieIn task will begin in this state.
4. Select the lines for the entire ShutIn state, from “initial state Shutin” to the closing

brace. Copy the state code and paste it below the ShutIn state, ensuring that you are not
pasting inside the closing brace of the ShutIn state, and that you are pasting within the
closing brace of the task.

Scanner Logic IDE Section 4

61

5. Notice that there are parser errors showing in the Error List panel now. The text that is
causing the syntax errors is underlined in red. If you double click on an error row in the Error
List, the cursor will move to the location of that error.

6. Delete the keyword initial from the pasted state code, and change the name of the state to
Flowing.

7. Navigate to the bottom of the Editor window and click the plus icon to the left of a collapsed
region called Subroutines to expand the code lines within.

8. Type the following lines of code (as shown in Figure 4.2) within the Subroutines region,
above the “#endregion” line revealed by expanding the region in the previous step.

void subroutine CalculateStationValues()
{

}

Figure 4.2—Subroutine to add

9. Type the following lines of code inside the braces of the subroutine added in the last step (as
shown in Figure 4.3). This code will update the calculated Holding Register values for
StationDP and PercentFlowingTime.

 StationDP = StationInletPressure - StationOutletPressure;

 PercentFlowingTime = StationTieIn.Flowing.TotalActiveTime /
(StationTieIn.Flowing.TotalActiveTime + StationTieIn.ShutIn.TotalActiveTime);

Figure 4.3—Subroutine code to add

Notice how the auto-completion feature opens a drop-down list of possible identifiers and
keywords available at various times as you type. The list automatically filters as you type, and as
a shortcut, you can cursor down to the word that you want and press Enter or double-click the
word to place it into your code. If the list closes and you want to reopen it, press
<CTRL>+<SPACE>. Also, notice that you can hover your cursor over identifiers and a quick info
tip appears that provides some useful information about the identifier.

10. We want the calculated values to be up to date at the start of each execution cycle, before we
potentially reference the values in subsequent code. The very first execution cycle of the
program starts in the onEnter block of the initial state and stops at the end of the
onEnter. Every execution cycle thereafter starts in the onLoop block of the current state, and
either end at the bottom of the same onLoop block or end at the bottom of the onEnter block
of a different state. Enter the code in Figure 4.4 as the first line in the onEnter block of the
ShutIn state, and as the first line in the onLoop blocks of both the ShutIn and Flowing
states.

 CalculateStationValues();

Figure 4.4—Call CalculateStationValues() subroutine

11. Next, we will define the conditions that will cause transitions between states. The transition
from the Flowing state to the ShutIn state occurs when the ShutInStartedAlarm becomes
active, which in turn occurs after its hold-off delay is completed. Alternatively, if the

Section 4 Scanner Logic IDE

62

ProgramControl register value is 0, we must transition directly to ShutIn. Add the code from
Figure 4.5 in the onLoop block of the Flowing state, after the line containing
CalculateStationValues() added in the previous step.

 if (ShutInStartedAlarm.IsActive ||
 ProgramControl == 0)
 changestate ShutIn;

Figure 4.5—Transition to ShutIn state

12. For the ShutInStartedAlarm to become active, it must be asserted to start the hold-off
delay, and the alarm must remain asserted for the entire duration of the delay. The alarm is
asserted when the StationDP reaches or falls below the threshold of MinFlowingDP, and is
de-asserted when StationDP rises above MinFlowingDP again before the hold-off delay has
elapsed. Add the code in Figure 4.6 in the onLoop block of the Flowing state, after the code
entered from Figure 4.5 in the step above.

 if (StationDP <= MinFlowingDP)
 ShutInStartedAlarm.Assert();
 else
 ShutInStartedAlarm.Deassert();

Figure 4.6—Update ShutInStartedAlarm

Notice that we are using just the names of the objects in this code, rather than accessing the
Value properties. Many object types have default properties that can be omitted in the code, and
the parser will automatically know to use the default property. In the usage above, the default
property of the objects is Value. You can view this information in the quick info tips that appear
when you hover the mouse cursor over each of the relevant identifiers. For example, the first line
of code above is interpreted as shown in Figure 4.7 below.

 if (StationDP.Value <= MinFlowingDP.Value)

Figure 4.7—Default properties

13. Now we will write the code that transitions from the ShutIn state to the Flowing state. When
the FlowingStartedAlarm becomes active after its hold-off delay is completed, we are
ready to transition to the Flowing state. However, we also need to ensure that
MinShutInTime minutes have elapsed before we can leave the ShutIn state. Furthermore, if
the ProgramControl register value is “0,” we must remain in ShutIn and can only transition
if ProgramControl is “1.” Add the code in Figure 4.8 in the onLoop block of the ShutIn state,
after the line containing CalculateStationValues() added in a previous step.

 if (FlowingStartedAlarm.IsActive &&
 ShutIn.ActiveTime >= (MinShutInTime * 60) &&
 ProgramControl == 1)
 changestate Flowing;

Figure 4.8—Transition to Flowing state

Scanner Logic IDE Section 4

63

14. For the FlowingStartedAlarm to become active, it must be asserted to start the hold-off
delay, and the alarm must remain asserted for the entire duration of the delay. The alarm is
asserted when the StationDP reaches or exceeds the threshold of MaxShutInDP, and is
deasserted when StationDP falls below MinFlowingDP again before the hold-off delay has
elapsed. Add the code in Figure 4.9 in the onLoop block of the ShutIn state after the code
entered from Figure 4.8 above.

 if (StationDP >= MaxShutInDP)
 FlowingStartedAlarm.Assert();
 else
 FlowingStartedAlarm.Deassert();

Figure 4.9—Update FlowingStartedAlarm

15. Next, we will add code to the onExit and onEnter blocks of the two states. When we
transition out of the ShutIn state, we want to de-assert ShutInStartedAlarm, so that it can
be used in the Flowing state for transition checking in the code that was entered from Figure
4.5 and Figure 4.6. Type the code in Figure 4.10 in the onExit block of the ShutIn state.

 ShutInStartedAlarm.Deassert();

Figure 4.10—De-assert ShutInStartedAlarm

16. When we transition out of the Flowing state, we want to de-assert FlowingStartedAlarm so
it can be used in the ShutIn state for transition checking in the code that was entered from
Figure 4.8 and Figure 4.9. Type the code in Figure 4.11 in the onExit block of the Flowing
state.

 FlowingStartedAlarm.Deassert();

Figure 4.11—De-assert FlowingStartedAlarm

17. When we enter the ShutIn state, we want to ensure that the ShutInStartedAlarm is
asserted, no matter how the state was arrived at. We also need to set the
FlowValveController into manual override mode and force the valve to close. Enter the
code in Figure 4.12 in the onEnter block of the ShutIn state, after the
CalculateStationValues() line.

 ShutInStartedAlarm.Assert();

 FlowValveController.OverrideValue = 0.0;
 FlowValveController.SetManualMode();

Figure 4.12—Set FlowValveController in manual mode

18. Similarly, when we enter the Flowing state, we want to ensure that the
ShutInStartedAlarm is asserted, no matter how the state was arrived at. Also, we will set
the FlowValveController into automatic operation mode and allow it to actively control the
flow valve to achieve the desired setpoint value. The controller SetPoint property is
connected to a User HMI Field, so it can be adjusted by the user over the web interface or
Modbus. Enter the code in Figure 4.13 in the onEnter block of the Flowing state.

Section 4 Scanner Logic IDE

64

 FlowingStartedAlarm.Assert();

 FlowValveController.SetAutoMode();

Figure 4.13—Set FlowValveController in auto mode

19. Find the “System Declarations” collapsible region and click the plus icon to the left of the
region heading to open it. You will see a failstate declaration and an abortstate
declaration. The program can enter the fail state if Scanner 3100 I/O configuration that the
script depends upon has been changed or if some severe program error occurs. Also, the
program can be aborted via the web interface Logic Controller Program Control screen or via
a digital input signal configured for the purpose. These actions will cause the program to
enter the abort state. Entry into either of these special states will trigger the Scanner 3100 to
create an event log for the occurrence.

The program will loop indefinitely in the onLoop blocks of the failstate and abortstate
once entered. The changestate keyword is not allowed in these states, so they cannot be
exited. The only way to resume program operation is to restart the program, which can be
done via the Program Control screen in the web interface, after resolving any error conditions
that might have triggered a failstate entry.

You can add user code to execute in the onEntry or onLoop blocks of these two special
system states. This is useful for returning the system to a safe or predictable condition. We
will cause the flow valve to close, de-assert the FlowingStartedAlarm, and force the
ShutInStartedAlarm to become active. Add the code in Figure 4.14 into the onEnter blocks
of failState and abortState.

 FlowValveController.OverrideValue = 0.0;
 FlowValveController.SetManualMode();

 FlowingStartedAlarm.Deassert();

 ShutInStartedAlarm.HoldOffDelay = 0;
 ShutInStartedAlarm.Assert();

Figure 4.14—Code to add to failState and abortState

We are now done entering the code for the example program. If there are errors showing in the Error
List at this point, go over these steps again or compare your program with the complete program
listed in Appendix B to verify that no typographical mistakes have been made.

Adding User HMI Fields

1. Locate the “User HMI Fields” tab, click on row 01, and click Edit.
2. Fill in the information according to Table 4.22 and click OK.
3. Repeat the process for rows 02 to 21 using the settings in Table 4.23 through Table 4.42.

TABLE 4.22—USER HMI FIELD ITEM 01 (STATIONTIEIN.FLOWING.TOTALACTIVETIME)

Item Value
PropertyName StationTieIn.Flowing.TotalActiveTime

Scanner Logic IDE Section 4

65

Item Value
Header Station Tie In Statistics

Description Total time spent in Flowing state (seconds)

Webmodify False

TABLE 4.23—USER HMI FIELD ITEM 02 (STATIONTIEIN.FLOWING.ACTIVETIME)

Item Value
PropertyName StationTieIn.Flowing.ActiveTime

Header Leave blank

Description Amount of time since Flowing state entered (seconds)

Webmodify False

TABLE 4.24—USER HMI FIELD ITEM 03 (STATIONTIEIN.SHUTIN.TOTALACTIVETIME)

Item Value
PropertyName StationTieIn.ShutIn.TotalActiveTime

Header Leave blank

Description Total time spent in ShutIn state (seconds)

Webmodify False

TABLE 4.25—USER HMI FIELD ITEM 04 (STATIONTIEIN.SHUTIN.ACTIVETIME)

Item Value
PropertyName StationTieIn.ShutIn.ActiveTime

Header Leave blank

Description Amount of time since ShutIn state entered (seconds)

Webmodify False

TABLE 4.26—USER HMI FIELD ITEM 05 (PERCENTFLOWINGTIME.VALUE)

Item Value
PropertyName PercentFlowingTime.Value

Header Leave blank

Description Percent of total time spent in Flowing state

Webmodify False

Section 4 Scanner Logic IDE

66

TABLE 4.27—USER HMI FIELD ITEM 06 (STATIONFLOWRATE.VALUE)

Item Value
PropertyName StationFlowRate.Value

Header Station Rate and Pressure

Description Flow rate through station

Webmodify False

TABLE 4.28—USER HMI FIELD ITEM 07 (STATIONINLETPRESSURE.VALUE)

Item Value
PropertyName StationInletPressure.Value

Header Leave blank

Description Static pressure at station inlet

Webmodify False

TABLE 4.29—USER HMI FIELD ITEM 08 (STATIONOUTLETPRESSURE.VALUE)

Item Value
PropertyName StationOutletPressure.Value

Header Leave blank

Description Static pressure at station outlet

Webmodify False

TABLE 4.30—USER HMI FIELD ITEM 09 (STATIONDP.VALUE)

Item Value
PropertyName StationDP.Value

Header Leave blank

Description Difference between InletPressure and OutletPressure

Webmodify False

TABLE 4.31—USER HMI FIELD ITEM 10 (FLOWVALVECONTROLLER.OUTPUT)

Item Value
PropertyName FlowValveController.Output

Header Leave blank

Description Normalized output of FlowValveController

Webmodify False

Scanner Logic IDE Section 4

67

TABLE 4.32—USER HMI FIELD ITEM 11 (SHUTINSTARTEDALARM.ISACTIVE)

Item Value
PropertyName ShutInStartedAlarm.IsActive

Header Shut In Alarm

Description Notifies system that ShutIn state has been entered (1 = Active)

Webmodify False

TABLE 4.33—USER HMI FIELD ITEM 12 (SHUTINSTARTEDALARM.HOLDOFFTIME)

Item Value
PropertyName ShutInStartedAlarm.HoldOffTime

Header Leave blank

Description ShutIn alarm active count in hold-off (seconds)

Webmodify False

TABLE 4.34—USER HMI FIELD ITEM 13 (SHUTINSTARTEDALARM.HOLDOFFDELAY)

Item Value
PropertyName ShutInStartedAlarm.HoldOffDelay

Header Leave blank

Description Configured ShutIn alarm hold-off delay (seconds)

Webmodify True

TABLE 4.35—USER HMI FIELD ITEM 14 (SHUTINSTARTEDALARM.ISACTIVE)

Item Value
PropertyName FlowingStartedAlarm.IsActive

Header Flowing Alarm

Description Notifies system that Flowing state has been entered (1 = Active)

Webmodify False

TABLE 4.36—USER HMI FIELD ITEM 15 (FLOWINGSTARTEDALARM.HOLDOFFTIME)

Item Value
PropertyName FlowingStartedAlarm.HoldOffTime

Header Leave blank

Description Flowing alarm active count in hold-off (seconds)

Webmodify False

Section 4 Scanner Logic IDE

68

TABLE 4.37—USER HMI FIELD ITEM 16 (FLOWINGSTARTEDALARM.HOLDOFFDELAY)

Item Value
PropertyName FlowingStartedAlarm.HoldOffDelay

Header Leave blank

Description Configured Flowing alarm hold-off delay (seconds)

Webmodify True

TABLE 4.38—USER HMI FIELD ITEM 17 (PROGRAMCONTROL.VALUE)

Item Value
PropertyName ProgramControl.Value

Header Program Control

Description 0 = hold program in ShutIn state, 1 = run program normally

Webmodify True

TABLE 4.39—USER HMI FIELD ITEM 18 (FLOWVALVECONTROLLER.SETPOINT)

Item Value
PropertyName FlowValveController.SetPoint

Header Leave blank

Description The desired flow rate for the station, controlled by the flow valve

Webmodify True

TABLE 4.40—USER HMI FIELD ITEM 19 (MINFLOWINGDP.VALUE)

Item Value
PropertyName MinFlowingDP.Value

Header Leave blank

Description Minimum differential pressure threshold for Flowing state, below
which we transition to ShutIn state

Webmodify True

TABLE 4.41—USER HMI FIELD ITEM 20 (MAXSHUTINDP.VALUE)

Item Value
PropertyName MaxShutInDP.Value

Header Leave blank

Description Maximum differential pressure threshold for ShutIn state, above
which we transition to Flowing state

Scanner Logic IDE Section 4

69

Item Value
Webmodify True

TABLE 4.42—USER HMI FIELD ITEM 21 (MINSHUTINTIME.VALUE)

Item Value
PropertyName MinShutInTime.Value

Header Leave blank

Description Required minimum time to remain in ShutIn state (minutes)

Webmodify True

Section 5 Scanner Logic IDE

70

This page is left blank intentionally.

Scanner Logic IDE Section 5

71

SECTION 5—DEBUGGING SCRIPTS

The purpose of Debug Mode is to give the user a detailed view of the runtime execution of a Scanner
Logic program. The IDE has tools that allow a user to control the runtime execution of a program so
that the following observations can be made:

• Task switch execution events
• When a task has a state change
• When a program line is reached
• The results of a single line execution
• The contents of register and resource properties at any point in the execution
• The line-by-line execution flow of a program

This section will describe how to establish a debug session and the tools used to control and observe
the program execution.

STARTING A DEBUG SESSION

Starting a debug session with a Scanner requires an error-free Scanner Logic program, the selection
of a compiler target platform, and the selection of a Scanner 3100 device connection.

Reviewing Device Connections
Select the Device Connections grid (Figure 5.1) to view all Scanner device connections that have
been created within the IDE. If no connections exist, see Section 3 for instructions about creating a
new connection.

Figure 5.1—Reviewing active device connections.

The Scanner for which you wish to start a debug session must be accessible over a device
connection.

Click Refresh All to test the current state of the desired device connection. The IDE will attempt to
communicate over all the created device connections and retrieve the device information from all
Scanners that are found.

If the desired device connection is found, note the device model and firmware version to complete the
Debug Session start up.

An attempt to start a debug session with a lost device is permitted. The IDE will make the attempt to
locate the desired connection and notify the user if the Scanner cannot be found.

Selecting Target Platform and Device Connection

Starting the debug session involves compiling the Scanner Logic program open in the Editor and
uploading the resulting SLBIN file to the Scanner over the selected device connection.

Section 5 Scanner Logic IDE

72

To ensure the correct SLBIN is created from the compilation process, the target platform must be
selected. “Target Platform” refers to the Scanner device’s model and firmware version.

1. To select a target platform, choose Scanner>Change Target Platform or click in the Target
Platform selector (Figure 5.2) and select the desired target platform.

Figure 5.2—Target Platform selector

The target platform selected must match the device model and firmware version of the Scanner at the
desired device connection. An SLBIN compiled to an incompatible Target Platform will be rejected by
the Scanner.

2. Choose the desired device connection by selecting Scanner>Select Device Connections or
by clicking in the Device Connection selector (Figure 5.3) and selecting the desired
connection.

Figure 5.3—Device Connection selector

Debug Session Start Sequence
Select Debug>Start Debugging on the menu bar of the IDE to start a debug session.

Tip From the Editor, press F8 to start a debug session.

To begin the debug session, the IDE automatically performs the actions below in sequence:

• A save command of any previously unsaved changes will be sent to the file open in the Editor.

• A compiler build command to create the SLBIN file will be sent. Any errors still present in the
program (e.g. typos, syntax errors, etc.) will halt this process. Any reported compiler errors (e.g.
binary is too large to load to the Scanner, or is too demanding to run) will terminate this process.

• The TCP/IP connection will be established via the selected device connection. If the connection
cannot be established, the process will be terminated.

• The IDE will request that any installed SLBIN file be erased. If the Scanner does not have an
installed SLBIN, the user will not be prompted. Otherwise, the user must grant permission to
perform the erasure.

Scanner Logic IDE Section 5

73

• The IDE will request a debug session in the Scanner. While the debug session is active, the
Scanner communicates Scanner Logic runtime data to the IDE after each execution cycle (i.e.
every second). This data is like a snapshot of the logic system used to populate the debug panels
and indicators. The debug session makes it possible to stop the logic program execution cycle.
The debug session will last until it completes or until 20 minutes of inactivity has been detected.

• The IDE will preconfigure a halt condition (like the “Break All” command) so the new SLBIN will
be halted at the beginning of its first execution cycle.

• The IDE will upload the new SLBIN file to the Scanner to validate the integrity of the file and to
verify that it was built to the required target platform. The IDE will also confirm the authenticity
and integrity of the transfer. If any check fails, the process will be terminated.

• The Scanner will begin executing the uploaded program and halt when it reaches the first user-
created state execution.

• The IDE will transition into Debug mode. While in Debug mode, the Editor document will be set to
read-only. The Debug mode has its own window layout (Figure 5.4) that can be modified by the
user.

Debug Mode Windows Layout

Figure 5.4—Debug mode windows default layout

The Debug Mode windows layout is a customizable layout loaded when the IDE successfully enters
debug mode. Like the Edit Mode windows layout, this layout is persistent for a given target platform
selection.

Each of the Debug Mode windows presents a view of the state of an executing Scanner Logic
program, as well as the runtime data produced by the program. The contents of each window are
updated when debug data is received from the connected Scanner.

Section 5 Scanner Logic IDE

74

While in debug mode, the Editor is read-only and the program cannot be modified. All Resource and
Register grids are also available to view but cannot be edited. By default, these grids are parked
along the top of the Debug Mode windows layout and set to auto-collapse.

Script Execution Status
The Script Execution Status window shows detailed information about the program’s current
execution state.

Figure 5.5—Script Execution Status window

The following rows in the grid provide insight into the execution state of the program.

• Execution Time—Seconds since program start or restart

• Image Status—The validation status of the SLBIN file in the Scanner.

Note This will always be reported as “Image Validated” when debugging since a valid SLBIN is
required to begin, and debugging will abort if the state ever changes.

• Program State—Possible states are Running, Breakpoint, Fail, Fail Breakpoint, Abort, and Abort
Breakpoint.

• Line Number—The current executing line number in the program. This line can belong to any
task. This is also indicated in the Editor breakpoint margin by a yellow arrow.

• Task Status #N (where N = [1,2,3,4])—The current task information if the program is currently
executing code within the indicated Task block. Composed of four elements:

<TaskLineNumber>; <TaskExecutionState>; <TaskCurrentStateName> [<TaskCurrentStateID>]

TaskLineNumber—The current line number executed inside that task.

TaskExecutionState—The current Execution State of that task (“Idle”, “Running”, or “Breakpoint”)

TaskCurrentStateName—The name of the current or last known state block executed in the task.

TaskCurrentStateID—The ID of the current or last known state block executed in the task.

Watch Tree
The Debug Watch Tree window contains a collapsible tree view of all the runtime data from the
relevant Scanner Logic objects reported by the connected Scanner. The relevant objects are all user-
declared objects from the program (Resource, Register, Task, and State objects), as well the system
objects (listed under the “System” node in Watch Tree). The declared user object names are included
to help identify an object used by the programmer for a specific purpose.

Scanner Logic IDE Section 5

75

Figure 5.6—Debug Watch Tree window

The grid items with attached values within the tree are the property members of each object. The
units of the property values are those selected in the declarations of the objects within the Scanner
Logic program. For a complete description of the Scanner Logic object properties, refer to the
Scanner Logic Programmer Manual.

The Watch Tree supports runtime value change indication. If the contents of a cell in the value
column have changed between updates, the value will be emphasized in bold blue font. When the
next runtime data update is received (in one second), all emphasis will reset or persist based on any
change in the updated value.

Depending on the Scanner Logic program size being executed and the number of objects declared
within it, the Watch Tree can contain a considerable amount of data. To limit the view to property
values of interest, use the collapse property. Right-click within the Watch Tree to access the
“Collapse Children,” “Expand Children,” “Collapse All,” and “Expand All” commands.

System Load Charts
The System Load charts provide another view of the execution status of the connected Scanner. The
two scrolling charts display a brief history of the CPU usages of the metrological functions and the
Scanner Logic execution load over the last 30 seconds of received debug data. Each bar indicates
the Scanner’s processor load as measured over the previous 1-second calculation period.

Section 5 Scanner Logic IDE

76

Considerable CPU resources are allocated for the
Scanner Logic execution and only Scanner Logic
programs containing states with large execution blocks
will register in the Logic Load chart.

If a program has large execution blocks within states
causing the Scanner to approach the 100% Logic Load
limit, refactor the program states. Splitting up large states
into multiple smaller states can make the Logic Script
more readable and reduce the Logic Load.

Figure 5.7—System Load charts

Debug Status Bar
While in Debug mode, the status bar at the bottom of the IDE indicates the debug state. Because it is
always available for viewing, the user should become familiar within its operation.

Figure 5.8—Debug status bar

The status bar’s background color will change to indicate the Program State. Table 5.1 shows the
possible program states.

TABLE 5.1—POSSIBLE PROGRAM STATES
Program State Color Status

Running Green Program is executing normally.

Breakpoint Orange Program execution is halted:

• At a user-defined breakpoint (indicated in Editor Margin
and Breakpoint tab)

• After executing the operation at the point the “Break All”
command is received by the Scanner.

Fail Red Program is executing code in the failState block.

Fail Breakpoint Red Program execution is halted in failState block.

Abort Orange Program is executing code in the abortState block.

Abort
Breakpoint

Orange Program execution is halted in the abortState block.

Scanner Logic IDE Section 5

77

Stepping through Program Code
The user can identify the state of program execution using the Script Execution Status window and
Debug status bar. Both tools will indicate program execution status and the current execution line
number and are described in the Debug Mode Windows Layout section. Within the Editor, a yellow
arrow indicator () is placed in the margin on the current execution line.

Program execution is controlled using debug commands and breakpoints. The debug commands are
direct controls over the starting and stopping of program execution while the breakpoint allows the
user to indirectly halt execution when the Scanner reaches a marked line number.

Debug Commands

Run

The “Run” command will start or resume the program execution. When transmitted to the Scanner via
the device connection, the Scanner will begin a “free run” of the program from the current execution
line. The Scanner will continue to run the program until halted. Halting can occur because the
program reaches a breakpoint or the “Break All” command is executed by the user.

While the program status is running, the current line indication and line number will be the last line
executed within a Scanner Logic execution cycle. As the execution changes between the user-
defined states within the program, the current line can be expected to jump.

While the program status is running, the Watch Tree will also be updated with the live runtime data
once per second. The Watch Tree indicates which values have changed from the previous update by
emboldening a property value in a blue font.

The “Run” command is only available when the program is halted. It can be performed by selecting
Debug>Run on the menu bar.

Step

The “Step” command will execute a single program line at the current halted program line number.
When transmitted to the Scanner over the device connection, the Scanner will begin program
execution but will then halt when the beginning of a new program line is detected.

When the “Step” command is executed, the program status will remain as “breakpoint.” With each
successive “Step” command both the current line and the Watch Tree will be updated. In Scanner
Logic, a statement may be expressed over multiple line numbers. When stepping through a Scanner
Logic statement that is expressed on multiple lines, the current line number may return to the first line
of the statement or expression after it is fully executed.

The “Step” command is only available when the program is halted. It can be performed by selecting
Debug>Step on the menu bar.

Break All

The “Break All” command will halt execution. When transmitted to the Scanner over the device
connection, the Scanner will complete the currently executing line and then halt execution.

The “Break All” command is only available when the program is running. The command can be
performed by selecting Debug>Break All on the menu bar.

Section 5 Scanner Logic IDE

78

Restart

The “Restart” command will restart the program execution from the beginning. When transmitted to
the Scanner over the device connection, the Scanner will cease the current execution and restart the
program as though a device power on reset has occurred. Any non-volatile object property will be
restored (such as the value of Configuration and Maintenance registers) and all other object
properties will be set to their initial value parameters in the object declaration. The program will be
halted on the first line within the first declared task.

The “Restart” command is only available when the program is running. It can be performed by
selecting Debug>Restart on the menu bar.

Go To Current Execution Line

The “Go To Current Execution Line” command will refocus the Editor to the location of the current
execution line and move the cursor there. This is a useful debug command when working with larger
script. The “Go To Current Execution Line” command does not affect the program execution and is
not transmitted to the Scanner.

If the Editor is displaying a vertical split, the focus and cursor position will only be changed in the
lower view.

The “Go To Current Execution Line” command is only available when the program is halted. It can be
performed by selecting Debug>Go To Current Execution Line on the menu bar.

Breakpoints

Breakpoints allow the user to indirectly halt program execution when the Scanner reaches a marked
line number. Breakpoints can be used to halt and view the program status as it changes states or just
before a line of interest is executed. The Scanner Logic IDE allows up to 16 breakpoints to be defined
at any one time.

Breakpoints are viewable within the margin of the Editor. If a breakpoint is inserted on a program line,
the Editor will display a red circle indicator in the margin and highlight the statement or expression
marking the point of halted execution.

Figure 5.8—Breakpoints in the Editor

The left-most portion of the Editor margin can be used to insert and remove breakpoints on a line.
Left-clicking the mouse within the debug margin will toggle a breakpoint on the line.

Scanner Logic IDE Section 5

79

Breakpoints cannot be added on blank or comment lines. In general, you can place a breakpoint on a
line that contains a semicolon (i.e. a “statement”) or contains code in parenthesis (i.e. “expressions”).
If a single line contains multiple statements or expressions, users may have to separate that code
such that the statement they desire to place a breakpoint on is on its own line.

Breakpoints can also be managed using the Breakpoint grid. Within the grid, each breakpoint is listed
in the order it was added. At the current cursor location within the Editor, a breakpoint can be added
and removed with the Toggle Breakpoint button. Breakpoints can also be disabled within this grid.
Disabled breakpoints are retained by the IDE, but do not cause the Scanner to halt execution.

Figure 5.9—Debug Breakpoints

Stop Debugging
The user can stop the debug session with a Scanner and exit Debug mode with the “Stop Debugging”
command. When transmitted to the Scanner over the device connection, the Scanner will close the
debug session with the IDE, stop the transmission of run time data updates, and disconnect from the
IDE. The program execution status on the Scanner will be changed to “Running and execution will
freely proceed from the last line executed in the debug mode. With the debug session closed, the
Scanner will ignore all breakpoints.

The IDE saves the current debug window layout and closes it, then loads the Edit Mode window
layout.

The “Stop Debugging” command is available during all program execution states. It can be performed
by selecting Debug>Stop Debugging on the menu bar.

Section 5 Scanner Logic IDE

80

This page is left blank intentionally.

Scanner Logic IDE Appendix A

81

APPENDIX A—OTHER PROGRAMS
DOWNLOADING AND INSTALLING SCANFLASH
ScanFlash* is an optional utility that can be used to simultaneously upload firmware updates and
configuration files to the SCANNER 3100 flow computer. To download the utility,

1. Go to the SCANNER 3100 website at http://www.cameron.slb.com/flowcomputers.

2. Select Scanner Model 3100 Flow Computer.
3. Locate the ScanFlash utility under the “Software” heading to the right of the

page.
4. Right-click, choose SAVE LINK AS…, and select the desired storage location.

By default, the file will be saved to C:\USERNAME\Downloads.
5. Browse to the Installation file and double-click it to open.
6. Select Setup.exe and run the installation program. By default, the files will be stored to

C:\Cameron\ScanFlash.

http://www.cameron.slb.com/flowcomputers

Appendix B Scanner Logic IDE

82

This page is left blank intentionally.

Scanner Logic IDE Appendix B

83

APPENDIX B—SAMPLE PROGRAM SOLUTION

// ==
// Scanner LogicScript Program
//
// Program Name:
// Program Version: 1.0
// Author:
// Date: 10/28/2017
// Purpose:
//
// ==

program
{

#region Program Information

 proginfo
 {
 ProgramName: "IDE Getting Started Example";
 ProgramAuthor: "John Smith";
 ProgramOwner: "OilCo Ltd";
 ProgramVersion: 1.000;
 ProgramCreationDate: "10/28/2017";
 Access_OnlineSource: "allusers";
 Access_OnlineControls: "allusers";
 Access_WriteHMI: "allusers";
 ProgramDescription: "This is a tutorial program for writing a program with the Scanner Logic
Script language in the Scanner Logic IDE.";
 }

 #endregion

 #region Program Declarations

 resource digitaloutputs
 {
 01: ShutInSignal
 {
 description: "Output signal to indicate that the system is in the ShutIn state";
 initial_IsActive: false;
 initial_FollowAlarm: 1;
 initial_Period: 2;
 initial_Duration: 1;
 }
 }

 registers holding
 {
 01: StationDP
 {
 group: "";
 description: "Difference between InletPressure and OutletPressure";
 category: "Differential Pressure";
 units: "kPa";
 initial_Value: 0;
 }
 02: PercentFlowingTime
 {
 group: "";
 description: "Percent of total time spent in Flowing state";
 category: "Percent";
 units: "%";
 initial_Value: 0;
 }
 }

Appendix B Scanner Logic IDE

84

 registers configuration
 {
 01: ProgramControl
 {
 group: "";
 description: "0 = hold program in ShutIn state, 1 = run program normally";
 category: "No Units";
 units: "";
 initial_Value: 0;
 }
 02: MinFlowingDP
 {
 group: "";
 description: "Minimum differential pressure threshold for Flowing state, below which we
transition to ShutIn state";
 category: "Differential Pressure";
 units: "kPa";
 initial_Value: 200;
 }
 03: MaxShutInDP
 {
 group: "";
 description: "Maximum differential pressure threshold for ShutIn state, above which we
transition to Flowing state";
 category: "Differential Pressure";
 units: "kPa";
 initial_Value: 225;
 }
 04: MinShutInTime
 {
 group: "";
 description: "Required minimum time to remain in ShutIn state (minutes)";
 category: "No Units";
 units: "";
 initial_Value: 15;
 }
 }

 resource alarms
 {
 01: ShutInStartedAlarm
 {
 description: "Notifies system that ShutIn state has been entered";
 initial_IsAsserted: true;
 initial_HoldOffDelay: 30;
 }
 02: FlowingStartedAlarm
 {
 description: "Notifies system when Flowing state has been entered";
 initial_IsAsserted: false;
 initial_HoldOffDelay: 30;
 }
 }

 resource analogpidcontrollers
 {
 01: FlowValveController
 {
 description: "Maintains desired flow rate at station by controlling flow valve";
 webcontrolflags: 0x003F;
 processvar: StationFlowRate;
 pidtype: "simplepid";
 pidaction: "direct";
 initial_IsAutoMode: false;
 initial_Period: 1;
 initial_RangeHigh: 10;
 initial_RangeLow: 0;
 initial_SetPoint: 7.5;
 initial_SetPointTolerance: 1;
 initial_SetPointDeadBand: 2;
 initial_OverrideValue: 0;

Scanner Logic IDE Appendix B

85

 initial_FailValue: 0;
 initial_Kp: 1;
 initial_Ki: 0;
 initial_Kd: 0;
 }
 }

 resource registerinputs
 {
 01: StationInletPressure
 {
 description: "Line pressure at station inlet, upstream from the flow control valve
(integrated MVT)";
 tagname: "Stat Press: Holding: Inst Reading";
 tagcode: "m32_FC_IN_2_Holding_InstReading";
 category: "Static Pressure (gauge)";
 units: "kPa(g)";
 }
 02: StationOutletPressure
 {
 description: "Line pressure at station outlet, downstream from the flow control valve
(pressure transducer)";
 tagname: "Analog 1: Holding: Inst Reading";
 tagcode: "m32_FC_IN_5_Holding_InstReading";
 category: "Static Pressure (gauge)";
 units: "kPa(g)";
 }
 03: StationFlowRate
 {
 description: "Flow rate through station, as limited by flow control valve";
 tagname: "FR1: HAccum: Gas Volume Flow Rate";
 tagcode: "m32_FC_FR_1_HoldingAccum_GasVolumeFlowRate";
 category: "Gas Volume";
 units: "m3";
 rate: "/sec";
 }
 }

 #endregion

 #region HMI Field Declarations

 hmifields user
 {
 01: UserHMI_01
 {
 propertyname: "StationTieIn.Flowing.TotalActiveTime";
 header: "Station Tie In Statistics";
 description: "Total time spent in Flowing state (seconds)";
 webmodify: false;
 }
 02: UserHMI_02
 {
 propertyname: "StationTieIn.Flowing.ActiveTime";
 description: "Amount of time since Flowing state entered (seconds)";
 webmodify: false;
 }
 03: UserHMI_03
 {
 propertyname: "StationTieIn.ShutIn.TotalActiveTime";
 description: "Total time spent in ShutIn state (seconds)";
 webmodify: false;
 }
 04: UserHMI_04
 {
 propertyname: "StationTieIn.ShutIn.ActiveTime";
 description: "Amount of time since ShutIn state entered (seconds)";
 webmodify: false;
 }
 05: UserHMI_05
 {

Appendix B Scanner Logic IDE

86

 propertyname: "PercentFlowingTime.Value";
 description: "Percent of total time spent in Flowing state";
 webmodify: false;
 }

 06: UserHMI_06
 {
 propertyname: "StationFlowRate.Value";
 header: "Station Rate and Pressure";
 description: "Flow rate through station";
 webmodify: false;
 }
 07: UserHMI_07
 {
 propertyname: "StationInletPressure.Value";
 description: "Static pressure at station inlet";
 webmodify: false;
 }
 08: UserHMI_08
 {
 propertyname: "StationOutletPressure.Value";
 description: "Static pressure at station outlet";
 webmodify: false;
 }
 09: UserHMI_09
 {
 propertyname: "StationDP.Value";
 description: "Difference between InletPressure and OutletPressure";
 webmodify: false;
 }
 10: UserHMI_10
 {
 propertyname: "FlowValveController.Output";
 description: "Normalized output of FlowValveController";
 webmodify: false;
 }

 11: UserHMI_11
 {
 propertyname: "ShutInStartedAlarm.IsActive";
 header: "Shut In Alarm";
 description: "Notifies system that ShutIn state has been entered (1 = Active)";
 webmodify: false;
 }
 12: UserHMI_12
 {
 propertyname: "ShutInStartedAlarm.HoldOffTime";
 header: "";
 description: "ShutIn alarm active count in hold-off (seconds)";
 webmodify: false;
 }
 13: UserHMI_13
 {
 propertyname: "ShutInStartedAlarm.HoldOffDelay";
 header: "";
 description: "Configured ShutIn alarm hold-off delay (seconds)";
 webmodify: true;
 }

 14: UserHMI_14
 {
 propertyname: "FlowingStartedAlarm.IsActive";
 header: "Flowing Alarm";
 description: "Notifies system that Flowing state has been entered (1 = Active)";
 webmodify: false;
 }
 15: UserHMI_15
 {
 propertyname: "FlowingStartedAlarm.HoldOffTime";
 header: "";
 description: "Flowing alarm active count in hold-off (seconds)";

Scanner Logic IDE Appendix B

87

 webmodify: false;
 }
 16: UserHMI_16
 {
 propertyname: "FlowingStartedAlarm.HoldOffDelay";
 header: "";
 description: "Configured Flowing alarm hold-off delay (seconds)";
 webmodify: true;
 }

 17: UserHMI_17
 {
 propertyname: "ProgramControl.Value";
 header: "Program Control";
 description: "0 = hold program in ShutIn state, 1 = run program normally";
 webmodify: true;
 }
 18: UserHMI_18
 {
 propertyname: "FlowValveController.SetPoint";
 description: "The desired flow rate for the station, controlled by the flow valve";
 webmodify: true;
 }
 19: UserHMI_19
 {
 propertyname: "MinFlowingDP.Value";
 description: "Minimum differential pressure threshold for Flowing state, below which we
transition to ShutIn state";
 webmodify: true;
 }
 20: UserHMI_20
 {
 propertyname: "MaxShutInDP.Value";
 description: "Maximum differential pressure threshold for ShutIn state, above which we
transition to Flowing state";
 webmodify: true;
 }
 21: UserHMI_21
 {
 propertyname: "MinShutInTime.Value";
 description: "Required minimum time to remain in ShutIn state (minutes)";
 webmodify: true;
 }
 }

 #endregion

 // /)
 // Program Execution - User Tasks and States
 // /(

 task StationTieIn
 {
 initial state ShutIn
 {

 onEnter
 {
 // Compute holding registers values
 CalculateStationValues();

 // signal that we are in ShutIn state now
 ShutInStartedAlarm.Assert();

 // set PID Controller in manual override mode with flow valve closed
 FlowValveController.OverrideValue = 0;
 FlowValveController.SetManualMode();
 }

 onLoop
 {

Appendix B Scanner Logic IDE

88

 // Compute holding registers values
 CalculateStationValues();

 // if the FlowingStartedAlarm hold-off delay has been reached, the alarm will be
 // active now
 // there is also a constraint that ShutIn cannot be exited for a minimum of
 // MinShutInTime minutes
 // there is a further constraint that we must remain in ShutIn if ProgramControl == 0
 if (FlowingStartedAlarm.IsActive &&
 ShutIn.ActiveTime >= (MinShutInTime * 60) &&
 ProgramControl == 1)
 changestate Flowing;

 // if the StationDP is above threshold, assert the alarm to start the hold-off
 // delay if it has not already been started; otherwise, de-assert the alarm
 // to turn off the hold-off delay
 if (StationDP >= MaxShutInDP)
 FlowingStartedAlarm.Assert();
 else
 FlowingStartedAlarm.Deassert();
 }

 onExit
 {
 // signal that we are out of ShutIn state now
 // (ShutInSignal digital output follows this alarm)
 ShutInStartedAlarm.Deassert();
 }

 } // end state ShutIn

 state Flowing
 {

 onEnter
 {
 // signal that we are in Flowing state now
 FlowingStartedAlarm.Assert();

 // put PID controller into auto mode and control flow valve to seek setpoint
 FlowValveController.SetAutoMode();
 }

 onLoop
 {
 // Compute holding registers values
 CalculateStationValues();

 // if the ShutInStartedAlarm hold-off delay has been reached,
 // the alarm will be active now.

 if (ShutInStartedAlarm.IsActive ||
 ProgramControl == 0)
 changestate ShutIn;

 // if the StationDP is below threshold, assert the alarm to start the hold-off
 // delay if it has not already been started; otherwise, de-assert the alarm
 // to turn off the hold-off delay
 if (StationDP <= MinFlowingDP)
 ShutInStartedAlarm.Assert();
 else
 ShutInStartedAlarm.Deassert();
 }

 onExit
 {
 // signal that we are out of Flowing state now
 FlowingStartedAlarm.Deassert();
 }

 } // end state Flowing

Scanner Logic IDE Appendix B

89

 } // end Task1

 #region System Declarations

 // /)
 // Program Execution - System States
 // /(

 // ->
 // Fail State
 // This state is entered when a system error occurs that causes the program to be
 // unable to run. Such causes include an programming error or a system configuration
 // mismatch in register inputs or digital i/o.
 // ->

 failState
 {

 onEnter
 {
 FlowValveController.OverrideValue = 0.0;
 FlowValveController.SetManualMode();

 FlowingStartedAlarm.Deassert();

 ShutInStartedAlarm.HoldOffDelay = 0;
 ShutInStartedAlarm.Assert();
 }

 onLoop
 {
 }

 } // end failState

 // --

 // ->
 // Abort State
 // This state is entered when an emergency stop is invoked through the web interface or
 // a special function digital input.
 // ->

 abortState
 {

 onEnter
 {
 FlowValveController.OverrideValue = 0.0;
 FlowValveController.SetManualMode();

 FlowingStartedAlarm.Deassert();

 ShutInStartedAlarm.HoldOffDelay = 0;
 ShutInStartedAlarm.Assert();
 }

 onLoop
 {
 }

 } // end abortState

 #endregion

 #region Subroutines

 // ->
 // Declare subroutines within this region
 // ->

Appendix B Scanner Logic IDE

90

 void subroutine CalculateStationValues()
 {
 // Compute the Station Differencial Pressure
 StationDP = StationInletPressure - StationOutletPressure;

 // Compute the Percent Flowing Time.
 PercentFlowingTime = StationTieIn.Flowing.TotalActiveTime /
(StationTieIn.Flowing.TotalActiveTime + StationTieIn.ShutIn.TotalActiveTime);
 }

 #endregion

} // end program

Scanner Logic IDE Appendix C

91

APPENDIX C—PARSER ERROR MESSAGES
This appendix contains a list of parser error messages that you may encounter. These errors are
generally the result of accidental coding mistakes. Correct the mistakes indicated, and the error
messages will disappear when the code is reparsed. Refer to the Programmers Manual if necessary.

"Unexpected token: 'xxx' ‘Timer1’ does not contain a definition for
‘StartTime’

'Activate' is a method, which is not valid in
this context. Did you intend to invoke the
method?

 'CalculateTotals' is a subroutine, which is not valid
in the given context.

The name 'LinePressure' does not exist in the
current context.

 'CalculateFactor' is a subroutine, which is not valid
in the given context. Did you intend to invoke the
subroutine?

Integer constant is outside the range of type
'uint'.

 Floating point constant is outside the range of type
'float'.

Target 'task' must be an object to access
member properties or methods.

 Non-invocable member 'ActiveTime' cannot be
used like a method.

'RestartExecution' method of task 'MainTask'
cannot be invoked from within the 'MainTask'
task.

 'RestartExecution' method of task 'MainTask'
cannot be invoked in the current context.

Subroutine name expected. Subroutines cannot be called recursively.

Subroutine calls cannot be made within other
subroutines.

 Non-invocable expression 'DoCalculations()'
cannot be used like a method.

Method 'Sin' takes 1 argument. Method 'Power' takes 2 arguments.

Method 'Activate' takes 0 arguments. There is no argument given that corresponds to
the required formal parameter ‘Exponent’ of
'Power(float,float)’

Argument 1: Cannot implicitly convert type
'bool' to 'float'.

 The left-hand side of an assignment must be a
property of an object.

Property 'Output' cannot be assigned to -- it is
read only.

 Default property 'IsActive' of 'OverflowAlarm'
cannot be assigned to -- it is read only.

Cannot convert type 'float' to object type
'RealTime'. Did you intend to assign to a
property of the object?

 Cannot assign a negative value to a property of
type 'uint'.

Cannot assign a value of type 'float' to a
property of type 'uint'. Try an explicit cast to
convert the value type.

 Unknown parameter 'categories'.

Cannot assign a value of type 'string' to a
parameter of type 'float'. Parameter values
must be of the correct type.

 The name 'FlowAlarm' is not a
RegisterInputResource.

Operator '+' cannot be applied to operands of
type 'float' and 'string'.

 Invalid operation. Division by constant zero.

Cannot convert type 'string' to 'float'. Type casts to type 'string' are not supported.

Appendix C Scanner Logic IDE

92

The type 'int32' could not be found. Operator '-' cannot be applied to operand of type
'bool'.

The operand of an increment or decrement
operator must be a variable or property.

 The operand of an increment or decrement
operator cannot be a constant.

Cannot implicitly convert type 'uint' to 'bool'.
Are you missing a type cast?

 The 'changestate' statement cannot be used in this
context. It can only be used within an onLoop
block.

The 'changestate' statement cannot be used
inside the Abort state.

 The 'return' statement cannot be used in this
context.

The 'continue' statement cannot be used in
this context.

 The 'resource alarms' declaration already exists in
this scope.

"The index '99' is outside of the valid range of
01 to 64 for 'registers holding'.

 The task 'ExtraTask' exceeds the maximum
number of tasks permitted (4).

The state 'AnotherState' exceeds the
maximum number of states permitted (96).

 The name 'Flow' is already defined in the program
scope.

Missing ‘onExit’ block in the state scope. Missing 'abortState' declaration in the program
scope.

Missing 'failState' declaration in the program
scope.

 There is already an 'abortState' declared in this
program.

Missing 'onEnter' block in the abortState
scope.

 There is already an 'failState' declared in this
program.

Missing 'onLoop' block in the failState scope. The 'onExit' block is not valid in this scope.

The subroutine 'ExtraSub' exceeds the
maximum number of subroutines permitted
(100).

 Parameter 'RealTime.Day' cannot be assigned to -
- it is read only.

The parameter named 'initial_Value' has
already been assigned in this scope.

 The index '01' has already been used in this
scope.

The name 'Alarm2' is already defined in the
program scope.

 Unknown value for 'category' parameter: 'Freq'.

Unknown value for 'category' parameter:
'Current'. Note that the Accumulation register
type has fewer allowed categories values.

 Missing 'category' parameter

Unknown value for 'units' parameter: 'cubicft'.
See documentation for valid units of category
'Gas Volume'.

 Unknown value for 'rate' parameter: '/week'.

Unknown value for 'pidtype' parameter: 'test'.
See documentation for valid parameter
values.

 Unknown value for 'pidaction' parameter: 'abc'.
See documentation for valid parameter values.

Unknown value for 'con_pidaction' parameter:
'def'. See documentation for valid parameter
values.

 The 'propertyname' parameter could not be
resolved to an object property: 'MyInput.Value'.
Has the intended object been renamed?

Scanner Logic IDE Appendix C

93

When 'propertyname' parameter references a
read-only object property, 'webmodify'
parameter value cannot be 'true'.

 An 'initial' state has already been declared in task
‘Main’.

Missing 'initial' state declaration in task
'MonitorFlow'.

 The name 'State1' is already defined in the current
task scope.

Subroutine must have a return type. Only assignment, invocation, increment, and
decrement expressions can be used as a
statement.

The 'proginfo' block has already been
declared in this scope.

 The Program Information section is out of
sequence.

The Program Declarations section is out of
sequence.

 The HMI Field Declarations section is out of
sequence.

The Task Declarations section is out of
sequence.

 Task declaration is missing state declarations.

The 'onEnter' section has already been
declared in the state scope.

 The 'onEnter' section is out of sequence.

The 'onLoop' section has already been
declared in the state scope.

 The 'onLoop' section is out of sequence.

The 'onExit' section has already been
declared in the state scope.

 Only the 'void' return type is supported in this
release.

Appendix D Scanner Logic IDE

94

This page is left blank intentionally.

Scanner Logic IDE Appendix D

95

APPENDIX D—RUNTIME ERROR CODES

Code Name Description
SL_E000 OK No error
SL_E001 Init State Execution Error Execution error encountered within Initialization State. See Execution

Result.
SL_E002 Fail State Execution Error Execution error encountered within Fail State. See Execution Result.
SL_E003 Abort State Execution Error Execution error encountered within Abort State. See Execution Result.
SL_E004 State On Enter Execution Error Execution error encountered within OnEnter of User State. See

Execution Result.
SL_E005 State On Loop Execution Error Execution error encountered within OnLoop of User State. See

Execution Result.
SL_E006 State On Exit Execution Error Execution error encountered within OnExit of User State. See

Execution Result.
SL_E007 Subroutine Execution Error Execution error encountered within OnExec of User Subroutine. See

Execution Result.
SL_E008 Register Input Category Not

Matched

SL_E009 Resource Mode Warning
SL_E010 Init State Load Failed Because

Image Invalid
Attempted to load Initialization State from an invalid SLBIN.

SL_E011 Init State Not Programmed Illegal SLBIN has a Task that does not contain an initialization state.
SL_E012 Init State Corrupt Initialization State unable to load because of corrupted state table.
SL_E013 Init State Not Ready Internal error caused by attempting to execute Initialization State

before it is loaded.
SL_E014 Init State Did Not Enter User

State
Illegal Initialization State does not contain Enter command.

SL_E015 Init State Unexpected Error Unexpected internal state indicating an execution error while loading
Initialization State.

SL_E016 Failure To Continue Init State Attempt to continue execution of Initialization State failed.
SL_E017 Illegal Goto From On Enter Illegal Goto executed within OnEnter of a State.
SL_E018 Illegal Goto From On Exit Illegal Goto executed within OnExit of a State.
SL_E019 State Load Failed Because Image

Invalid
Attempted to load State from an invalid SLBIN.

SL_E020 State Not Programmed Attempted to load a State index which is not included in current
SLBIN.

SL_E021 Attempt To Load Invalid State
Number

Attempted to load a State index which is out of range.

SL_E022 State Table Corrupt SLBIN contains a corrupted State Table.
SL_E023 State Unexpected Error Unexpected internal state indicating an execution error while loading

State.
SL_E024 State On Enter Not Loaded Internal error caused by attempting to execute OnEnter of a State

before it is loaded.
SL_E025 State On Loop Not Loaded Internal error caused by attempting to execute OnLoop of a State

before it is loaded.

Appendix D Scanner Logic IDE

96

Code Name Description
SL_E026 State On Exit Not Loaded Internal error caused by attempting to execute OnExit of a State

before it is loaded.
SL_E027 State On Enter Not Ready Internal error caused by attempting to execute OnEnter of a State

with an unknown load error.
SL_E028 State On Loop Not Ready Internal error caused by attempting to execute OnLoop of a State with

an unknown load error.
SL_E029 State On Exit Not Ready Internal error caused by attempting to execute OnExit of a State with

an unknown load error.
SL_E030 Subroutine Load Failed Because

Image Invalid
Attempted to load Subroutine from an invalid SLBIN.

SL_E031 Attempt To Load Invalid
Subroutine Number

Attempted to load a Subroutine index which is out of range.

SL_E032 Called Inactive Subroutine Attempted to load a Subroutine index which is not included in current
SLBIN.

SL_E033 Subroutine Table Corrupt SLBIN contains a corrupted Subroutine Table.
SL_E034 Subroutine Not Loaded Error when attempting to resume from break point within subroutine.
SL_E035 Subroutine Not Ready Internal error caused by attempting to execute OnExec of a

Subroutine with an unknown load error.
SL_E036 Illegal Goto From Subroutine Illegal Goto executed within OnExec of a Subroutine.
SL_E037 Illegal Call From Subroutine Illegal Call executed within OnExec of a Subroutine.
SL_E038 Subroutine Unexpected Error Unexpected internal state indicating an execution error while loading

Subroutine.
SL_E039 Unexpected Stack Over Flow Unexpected stack over flow when loading program counter.
SL_E040 Unexpected Stack Under Flow Unexpected stack under flow when loading program counter.
SL_E041 Unexpected Stack Re Entry Unexpected stack initialization from subroutine call while loading

program counter.
SL_E042 Unexpected Stack Exit Unexpected stack initialization from subroutine call return while

loading program counter.
SL_E043 Unexpected Stack Depth Unexpected stack depth while loading program counter.
SL_E044 Instruction Block Illegal Values Illegal Instruction Block values are not self-consistent.
SL_E045 Instruction Block Byte Size Not

Word Aligned
Error in instruction block record. Byte count of execution block not
word aligned.

SL_E046 Instruction Cache Index Invalid Error in instruction block record. Byte count of execution block valid
size.

SL_E047 Instruction Cache Illegal Image
Index

Error in instruction block record. Execution block outside of valid
SLBIN range.

SL_E048 Unexpected Instruction Block
Error

Unexpected error in instruction block record load.

SL_E049 Instruction Block Record Corrupt Retrieved instruction block failed record CRC.
SL_E050 Instruction Block Data Corrupt Retrieved instruction block failed data block CRC.
SL_E051 Stack State End Error Non-zero stack depth error encountered on End OpCode completing

state execution.
SL_E052 Stack State Change Error Non-zero stack depth error encountered on Change State OpCode

completing state execution.

Scanner Logic IDE Appendix D

97

Code Name Description
SL_E053 Stack Subroutine Re Entry Error Illegal attempt to initialize stack for subroutine entry. Stack already

serving subroutine.
SL_E054 Stack Subroutine Exit Error Illegal attempt to exit stack subroutine service. Stack not serving

subroutine.
SL_E055 Stack Subroutine Exit Depth

Error
Incorrect stack depth when leaving subroutine.

SL_E056 Program Counter Left Legal
Space

Illegal attempt of Program Counter to leave designated execution
block.

SL_E057 Instruction Word Invalid Encountered instruction word that failed validation.
SL_E058 Op Code Unknown Error Encountered unknown OpCode in a valid instruction word.
SL_E059 Unexpected State Execution

Error
Unexpected error during state execution.

SL_E060 Unexpected Subroutine
Execution Error

Unexpected error during subroutine execution.

SL_E061 Invalid Op Code Error Invalid OpCode error encountered.
SL_E062 Op Code Drop Stack Under Flow Stack under flow occurred while executing Drop OpCode.
SL_E063 Op Code Dup Stack Under Flow Stack under flow occurred while executing Dup OpCode.
SL_E064 Op Code Dup Stack Over Flow Stack over flow occurred while executing Dup OpCode.
SL_E065 Op Code Push Float Error

Loading Operand
Error loading float operand while executing Push_Float OpCode.

SL_E066 Op Code Push Float Invalid Float
Operand

Invalid Float Operand while executing Push_Float OpCode.

SL_E067 Op Code Push Float Stack Over
Flow

Stack over flow while executing Push_Float OpCode.

SL_E068 Op Code Push Integer Error
Loading Operand

Error loading Integer operand while executing Push_Integer OpCode.

SL_E069 Op Code Push Integer Invalid
Integer Operand

Invalid Integer Operand while executing Push_Integer OpCode.

SL_E070 Op Code Push Integer Stack
Over Flow

Stack over flow while executing Push_Integer OpCode.

SL_E071 Op Code Push Specifier Error
Loading Operand

Error loading Specifier operand while executing Push_Specifier
OpCode.

SL_E072 Op Code Push Specifier Invalid
Specifier Operand

Invalid Specifier Operand while executing Push_Specifier OpCode.

SL_E073 Op Code Push Specifier Stack
Over Flow

Stack over flow while executing Push_Specifier OpCode.

SL_E074 Op Code Push Address Error
Loading Operand

Error loading Address operand while executing Push_Address
OpCode.

SL_E075 Op Code Push Address Invalid
Address Operand

Invalid Address Operand while executing Push_Address OpCode.

SL_E076 Op Code Push Address Stack
Over Flow

Stack over flow while executing Push_Address OpCode.

SL_E077 Op Code Store Argument AStack
Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
Store OpCode.

Appendix D Scanner Logic IDE

98

Code Name Description
SL_E078 Op Code Store Argument

AInvalid Specifier
Argument A on stack found to be non-valid specifier while executing
Store OpCode.

SL_E079 Op Code Store Argument BStack
Under Flow

Stack under flow occurred while retrieving literal Argument B for Store
OpCode.

SL_E080 Op Code Store Argument
BInvalid Literal

Argument B on stack found to be non-valid literal word while
executing Store OpCode.

SL_E081 Op Code Store Invalid RScode Attempt to store to invalid Resource Specifier code
SL_E082 Op Code Store Specifier Not

AProperty
Invalid attempt to store a value to a resource specifier that is not a
property.

SL_E083 Op Code Store Specifier Not
Writable

Invalid attempt to store to a resource specifier that is read only.

SL_E084 Op Code Store Invalid Asset
Index

Internal error while executing Store OpCode returned invalid LM Asset
index.

SL_E085 Op Code Store Internal Store
Error

Internal error occurred while writing property during the execution of
the Store OpCode.

SL_E086 Op Code Store Incompatible
Data Type

Internal error while executing Store OpCode returned unexpected
error.

SL_E087 Op Code Store Unexpected Error
Result

Internal error while executing Store OpCode returned unexpected
error.

SL_E088 Op Code Recall Argument
AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
Recall OpCode.

SL_E089 Op Code Recall Argument
AInvalid Specifier

Argument A on stack found to be non-valid specifier while executing
Recall OpCode.

SL_E090 Op Code Recall Invalid RScode Attempt to Recall to invalid Resource Specifier code while executing
Recall OpCode.

SL_E091 Op Code Recall Specifier Not
AProperty

Invalid attempt to Recall a value to a resource specifier that is not a
property.

SL_E092 Op Code Recall Invalid Asset
Index

Internal error while executing Recall OpCode returned invalid LM
Asset index.

SL_E093 Op Code Recall Internal Recall
Error

Internal error occurred while writing property during the execution of
the Recall OpCode.

SL_E094 Op Code Recall Incompatible
Data Type

Internal error while executing Recall OpCode returned unexpected
error.

SL_E095 Op Code Recall Unexpected
Error Result

Internal error while executing Recall OpCode returned unexpected
error.

SL_E096 Op Code Recall Stack Over Flow Stack Over Flow error occurred while executing Recall OpCode.
SL_E097 Op Code Recall Unexpected

Stack Error
Unexpected Stack error occurred while executing Recall OpCode.

SL_E098 Op Code Invoke Method
Argument AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
Invoke Method OpCode.

SL_E099 Op Code Invoke Method
Argument AInvalid Specifier

Argument A on stack found to be non-valid specifier while executing
Invoke Method OpCode.

SL_E100 Op Code Invoke Method Invalid
RScode

Attempt to invoke an invalid Resource Specifier code while executing
Invoke Method OpCode.

Scanner Logic IDE Appendix D

99

Code Name Description
SL_E101 Op Code Invoke Method

Specifier Not AMethod
Invalid attempt to invoke a value to a resource specifier that is not a
method.

SL_E102 Op Code Invoke Method Invalid
Asset Index

Internal error while executing Invoke Method OpCode returned
invalid LM Asset index.

SL_E103 Op Code Invoke Method Internal
Method Error

Internal error occurred while executing method during the execution
of the Invoke Method OpCode.

SL_E104 Op Code Invoke Method
Incompatible Data Type

Internal error while executing Invoke Method OpCode returned
unexpected error.

SL_E105 Op Code Invoke Method
Unexpected Error Result

Internal error while executing Invoke Method OpCode returned
unexpected error.

SL_E106 Op Code Invoke Method Stack
Over Flow

Stack Over Flow error occurred while executing Invoke Method
OpCode.

SL_E107 Op Code Invoke Method
Unexpected Stack Error

Unexpected Stack error occurred while executing Invoke Method
OpCode.

SL_E108 Op Code Change State
Argument AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
Change State OpCode.

SL_E109 Op Code Change State
Argument AInvalid Specifier

Argument A on stack found to be non-valid specifier while executing
Change State OpCode.

SL_E110 Op Code Change State Invalid
RScode

Attempt to change to an invalid Resource Specifier code while
executing Change State OpCode.

SL_E111 Op Code Change State Specifier
Not AState

Invalid attempt change to a resource specifier that is not a state.

SL_E112 Op Code Change State Invalid
State Index

Internal error while executing Change State OpCode which contained
an invalid State Index.

SL_E113 Op Code Changes State
Unexpected Error Result

Internal error while executing Change State OpCode returned
unexpected error.

SL_E114 Op Code Call Argument AStack
Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
Call OpCode.

SL_E115 Op Code Call Argument AInvalid
Specifier

Argument A on stack found to be non-valid specifier while executing
Call OpCode.

SL_E116 Op Code Call Invalid RScode Attempt to call an invalid Resource Specifier code while executing Call
OpCode.

SL_E117 Op Code Call Specifier Not
ASubroutine

Invalid attempt call a resource specifier that is not a Subrutine.

SL_E118 Op Code Call Invalid Subroutine
Index

Internal error while executing Call OpCode which contained an invalid
Subroutine Index.

SL_E119 Op Code Call Unexpected Error
Result

Internal error while executing Call OpCode returned unexpected
error.

SL_E120 Op Code Jump Argument AStack
Under Flow

Stack under flow occurred while retrieving Address Argument A for
Jump OpCode.

SL_E121 Op Code Jump Argument
AInvalid Address

Argument A on stack found to be non-valid Address while executing
Jump OpCode.

SL_E122 Op Code Jump Illegal Jump Jump attempted illegal PC offset which would result in leaving
instruction block.

Appendix D Scanner Logic IDE

100

Code Name Description
SL_E123 Op Code Branch If False

Argument AStack Under Flow
Stack under flow occurred while retrieving Address Argument A for
BranchIfFalse OpCode.

SL_E124 Op Code Branch If False
Argument AInvalid Address

Argument A on stack found to be non-valid Address while executing
BranchIfFalse OpCode.

SL_E125 Op Code Branch If False
Argument BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
BranchIfFalse OpCode.

SL_E126 Op Code Branch If False
Argument BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
BranchIfFalse OpCode.

SL_E127 Op Code Branch If False Illegal
Else Jump

BranchIfFalse attempted illegal Else PC offset which would result in
leaving instruction block.

SL_E128 Op Code If Then Else Argument
AStack Under Flow

Stack under flow occurred while retrieving Address Argument A for
IfThenElse OpCode.

SL_E129 Op Code If Then Else Argument
AInvalid Address

Argument A on stack found to be non-valid Address while executing
IfThenElse OpCode.

SL_E130 Op Code If Then Else Argument
BStack Under Flow

Stack under flow occurred while retrieving Address Argument B for
IfThenElse OpCode.

SL_E131 Op Code If Then Else Argument
BInvalid Address

Argument B on stack found to be non-valid Address while executing
IfThenElse OpCode.

SL_E132 Op Code If Then Else Argument
CStack Under Flow

Stack under flow occurred while retrieving Literal Argument C for
IfThenElse OpCode.

SL_E133 Op Code If Then Else Argument
CInvalid Literal

Argument C on stack found to be non-valid Literal while executing
IfThenElse OpCode.

SL_E134 Op Code If Then Else Illegal Then
Jump

IfThenElse attempted illegal Then PC offset which would result in
leaving instruction block.

SL_E135 Op Code If Then Else Illegal Else
Jump

IfThenElse attempted illegal Else PC offset which would result in
leaving instruction block.

SL_E136 Op Code Logical AND Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Logical AND OpCode.

SL_E137 Op Code Logical AND Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Logical AND OpCode.

SL_E138 Op Code Logical AND Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Logical AND OpCode.

SL_E139 Op Code Logical AND Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Logical AND OpCode.

SL_E140 Op Code Logical AND Stack Over
Flow

Stack over flow occurred while pushing result of Logical AND OpCode.

SL_E141 Op Code Logical OR Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Logical OR OpCode.

SL_E142 Op Code Logical OR Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Logical OR OpCode.

SL_E143 Op Code Logical OR Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Logical OR OpCode.

SL_E144 Op Code Logical OR Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Logical OR OpCode.

Scanner Logic IDE Appendix D

101

Code Name Description
SL_E145 Op Code Logical OR Stack Over

Flow
Stack over flow occurred while pushing result of Logical OR OpCode.

SL_E146 Op Code Equality Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Equality OpCode.

SL_E147 Op Code Equality Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Equality OpCode.

SL_E148 Op Code Equality Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Equality OpCode.

SL_E149 Op Code Equality Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Equality OpCode.

SL_E150 Op Code Equality Stack Over
Flow

Stack over flow occurred while pushing result of Equality OpCode.

SL_E151 Op Code Inequality Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Inequality OpCode.

SL_E152 Op Code Inequality Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Inequality OpCode.

SL_E153 Op Code Inequality Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Inequality OpCode.

SL_E154 Op Code Inequality Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Inequality OpCode.

SL_E155 Op Code Inequality Stack Over
Flow

Stack over flow occurred while pushing result of Inequality OpCode.

SL_E156 Op Code Greater Than
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Greater Than OpCode.

SL_E157 Op Code Greater Than
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Greater Than OpCode.

SL_E158 Op Code Greater Than
Argument BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Greater Than OpCode.

SL_E159 Op Code Greater Than
Argument BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Greater Than OpCode.

SL_E160 Op Code Greater Than Stack
Over Flow

Stack over flow occurred while pushing result of Greater Than
OpCode.

SL_E161 Op Code Less Than Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for Less
Than OpCode.

SL_E162 Op Code Less Than Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Less Than OpCode.

SL_E163 Op Code Less Than Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for Less
Than OpCode.

SL_E164 Op Code Less Than Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Less Than OpCode.

SL_E165 Op Code Less Than Stack Over
Flow

Stack over flow occurred while pushing result of Less Than OpCode.

SL_E166 Op Code Greater Than Equals
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Greater Than Equals OpCode.

Appendix D Scanner Logic IDE

102

Code Name Description
SL_E167 Op Code Greater Than Equals

Argument AInvalid Literal
Argument A on stack found to be non-valid Literal while executing
Greater Than Equals OpCode.

SL_E168 Op Code Greater Than Equals
Argument BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Greater Than Equals OpCode.

SL_E169 Op Code Greater Than Equals
Argument BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Greater Than Equals OpCode.

SL_E170 Op Code Greater Than Equals
Stack Over Flow

Stack over flow occurred while pushing result of Greater Than Equals
OpCode.

SL_E171 Op Code Less Than Equals
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for Less
Than Equals OpCode.

SL_E172 Op Code Less Than Equals
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Less Than Equals OpCode.

SL_E173 Op Code Less Than Equals
Argument BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for Less
Than Equals OpCode.

SL_E174 Op Code Less Than Equals
Argument BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Less Than Equals OpCode.

SL_E175 Op Code Less Than Equals Stack
Over Flow

Stack over flow occurred while pushing result of Less Than Equals
OpCode.

SL_E176 Op Code Add Argument AStack
Under Flow

Stack under flow occurred while retrieving Literal Argument A for Add
OpCode.

SL_E177 Op Code Add Argument AInvalid
Literal

Argument A on stack found to be non-valid Literal while executing Add
OpCode.

SL_E178 Op Code Add Argument BStack
Under Flow

Stack under flow occurred while retrieving Literal Argument B for Add
OpCode.

SL_E179 Op Code Add Argument BInvalid
Literal

Argument B on stack found to be non-valid Literal while executing Add
OpCode.

SL_E180 Op Code Add Stack Over Flow Stack over flow occurred while pushing result of Add OpCode.
SL_E181 Op Code Subtract Argument

AStack Under Flow
Stack under flow occurred while retrieving Literal Argument A for
Subtract OpCode.

SL_E182 Op Code Subtract Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Subtract OpCode.

SL_E183 Op Code Subtract Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Subtract OpCode.

SL_E184 Op Code Subtract Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Subtract OpCode.

SL_E185 Op Code Subtract Stack Over
Flow

Stack over flow occurred while pushing result of Subtract OpCode.

SL_E186 Op Code Multiply Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Multiply OpCode.

SL_E187 Op Code Multiply Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Multiply OpCode.

SL_E188 Op Code Multiply Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Multiply OpCode.

SL_E189 Op Code Multiply Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Multiply OpCode.

Scanner Logic IDE Appendix D

103

Code Name Description
SL_E190 Op Code Multiply Stack Over

Flow
Stack over flow occurred while pushing result of Multiply OpCode.

SL_E191 Op Code Divide Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Divide OpCode.

SL_E192 Op Code Divide Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Divide OpCode.

SL_E193 Op Code Divide Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Divide OpCode.

SL_E194 Op Code Divide Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Divide OpCode.

SL_E195 Op Code Divide Stack Over Flow Stack over flow occurred while pushing result of Divide OpCode.
SL_E196 Op Code Modulo Argument

AStack Under Flow
Stack under flow occurred while retrieving Literal Argument A for
Modulo OpCode.

SL_E197 Op Code Modulo Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Modulo OpCode.

SL_E198 Op Code Modulo Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Modulo OpCode.

SL_E199 Op Code Modulo Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Modulo OpCode.

SL_E200 Op Code Modulo Stack Over
Flow

Stack over flow occurred while pushing result of Modulo OpCode.

SL_E201 Op Code Exponentiation
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Exponentiation OpCode.

SL_E202 Op Code Exponentiation
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Exponentiation OpCode.

SL_E203 Op Code Exponentiation
Argument BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
Exponentiation OpCode.

SL_E204 Op Code Exponentiation
Argument BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
Exponentiation OpCode.

SL_E205 Op Code Exponentiation Stack
Over Flow

Stack over flow occurred while pushing result of Exponentiation
OpCode.

SL_E206 Op Code Bitwise AND Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
BitwiseAND OpCode.

SL_E207 Op Code Bitwise AND Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
BitwiseAND OpCode.

SL_E208 Op Code Bitwise AND Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
BitwiseAND OpCode.

SL_E209 Op Code Bitwise AND Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
BitwiseAND OpCode.

SL_E210 Op Code Bitwise AND Stack Over
Flow

Stack over flow occurred while pushing result of BitwiseAND OpCode.

SL_E211 Op Code Bitwise OR Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
BitwiseOR OpCode.

SL_E212 Op Code Bitwise OR Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
BitwiseOR OpCode.

Appendix D Scanner Logic IDE

104

Code Name Description
SL_E213 Op Code Bitwise OR Argument

BStack Under Flow
Stack under flow occurred while retrieving Literal Argument B for
BitwiseOR OpCode.

SL_E214 Op Code Bitwise OR Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
BitwiseOR OpCode.

SL_E215 Op Code Bitwise OR Stack Over
Flow

Stack over flow occurred while pushing result of BitwiseOR OpCode.

SL_E216 Op Code Bitwise XOR Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
BitwiseXOR OpCode.

SL_E217 Op Code Bitwise XOR Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
BitwiseXOR OpCode.

SL_E218 Op Code Bitwise XOR Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
BitwiseXOR OpCode.

SL_E219 Op Code Bitwise XOR Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
BitwiseXOR OpCode.

SL_E220 Op Code Bitwise XOR Stack Over
Flow

Stack over flow occurred while pushing result of BitwiseXOR OpCode.

SL_E221 Op Code Shift Left Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
ShiftLeft OpCode.

SL_E222 Op Code Shift Left Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
ShiftLeft OpCode.

SL_E223 Op Code Shift Left Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
ShiftLeft OpCode.

SL_E224 Op Code Shift Left Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
ShiftLeft OpCode.

SL_E225 Op Code Shift Left Stack Over
Flow

Stack over flow occurred while pushing result of ShiftLeft OpCode.

SL_E226 Op Code Shift Right Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
ShiftRight OpCode.

SL_E227 Op Code Shift Right Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
ShiftRight OpCode.

SL_E228 Op Code Shift Right Argument
BStack Under Flow

Stack under flow occurred while retrieving Literal Argument B for
ShiftRight OpCode.

SL_E229 Op Code Shift Right Argument
BInvalid Literal

Argument B on stack found to be non-valid Literal while executing
ShiftRight OpCode.

SL_E230 Op Code Shift Right Stack Over
Flow

Stack over flow occurred while pushing result of ShiftRight OpCode.

SL_E231 Op Code Logical Negation
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Logical Negation OpCode.

SL_E232 Op Code Logical Negation
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Logical Negation OpCode.

SL_E233 Op Code Logical Negation Stack
Over Flow

Stack over flow occurred while pushing result of Logical Negation
OpCode.

SL_E234 Op Code Bitwise Negation
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Bitwise Negation OpCode.

Scanner Logic IDE Appendix D

105

Code Name Description
SL_E235 Op Code Bitwise Negation

Argument AInvalid Literal
Argument A on stack found to be non-valid Literal while executing
Bitwise Negation OpCode.

SL_E236 Op Code Bitwise Negation Stack
Over Flow

Stack over flow occurred while pushing result of Bitwise Negation
OpCode.

SL_E237 Op Code Negation Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Negation OpCode.

SL_E238 Op Code Negation Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Negation OpCode.

SL_E239 Op Code Negation Stack Over
Flow

Stack over flow occurred while pushing result of Negation OpCode.

SL_E240 Op Code Abs Argument AStack
Under Flow

Stack under flow occurred while retrieving Literal Argument A for Abs
OpCode.

SL_E241 Op Code Abs Argument AInvalid
Literal

Argument A on stack found to be non-valid Literal while executing Abs
OpCode.

SL_E242 Op Code Abs Stack Over Flow Stack over flow occurred while pushing result of Abs OpCode.
SL_E243 Op Code Ceil Argument AStack

Under Flow
Stack under flow occurred while retrieving Literal Argument A for Ceil
OpCode.

SL_E244 Op Code Ceil Argument AInvalid
Literal

Argument A on stack found to be non-valid Literal while executing Ceil
OpCode.

SL_E245 Op Code Ceil Stack Over Flow Stack over flow occurred while pushing result of Ceil OpCode.
SL_E246 Op Code Floor Argument AStack

Under Flow
Stack under flow occurred while retrieving Literal Argument A for
Floor OpCode.

SL_E247 Op Code Floor Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Floor OpCode.

SL_E248 Op Code Floor Stack Over Flow Stack over flow occurred while pushing result of Floor OpCode.
SL_E249 Op Code Square Root Argument

AStack Under Flow
Stack under flow occurred while retrieving Literal Argument A for
SquareRoot OpCode.

SL_E250 Op Code Square Root Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
SquareRoot OpCode.

SL_E251 Op Code Square Root Stack Over
Flow

Stack over flow occurred while pushing result of SquareRoot OpCode.

SL_E252 Op Code Log Argument AStack
Under Flow

Stack under flow occurred while retrieving Literal Argument A for Log
OpCode.

SL_E253 Op Code Log Argument AInvalid
Literal

Argument A on stack found to be non-valid Literal while executing Log
OpCode.

SL_E254 Op Code Log Stack Over Flow Stack over flow occurred while pushing result of Log OpCode.
SL_E255 Op Code Log 10 Argument

AStack Under Flow
Stack under flow occurred while retrieving Literal Argument A for
Log10 OpCode.

SL_E256 Op Code Log 10 Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Log10 OpCode.

SL_E257 Op Code Log 10 Stack Over Flow Stack over flow occurred while pushing result of Log10 OpCode.
SL_E258 Op Code Exp Argument AStack

Under Flow
Stack under flow occurred while retrieving Literal Argument A for Exp
OpCode.

SL_E259 Op Code Exp Argument AInvalid
Literal

Argument A on stack found to be non-valid Literal while executing Exp
OpCode.

Appendix D Scanner Logic IDE

106

Code Name Description
SL_E260 Op Code Exp Stack Over Flow Stack over flow occurred while pushing result of Exp OpCode.
SL_E261 Op Code Sine Argument AStack

Under Flow
Stack under flow occurred while retrieving Literal Argument A for Sine
OpCode.

SL_E262 Op Code Sine Argument AInvalid
Literal

Argument A on stack found to be non-valid Literal while executing
Sine OpCode.

SL_E263 Op Code Sine Stack Over Flow Stack over flow occurred while pushing result of Sine OpCode.
SL_E264 Op Code Cosine Argument

AStack Under Flow
Stack under flow occurred while retrieving Literal Argument A for
Cosine OpCode.

SL_E265 Op Code Cosine Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Cosine OpCode.

SL_E266 Op Code Cosine Stack Over Flow Stack over flow occurred while pushing result of Cosine OpCode.
SL_E267 Op Code Tangent Argument

AStack Under Flow
Stack under flow occurred while retrieving Literal Argument A for
Tangent OpCode.

SL_E268 Op Code Tangent Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Tangent OpCode.

SL_E269 Op Code Tangent Stack Over
Flow

Stack over flow occurred while pushing result of Tangent OpCode.

SL_E270 Op Code Arcsine Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Arcsine OpCode.

SL_E271 Op Code Arcsine Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Arcsine OpCode.

SL_E272 Op Code Arcsine Stack Over
Flow

Stack over flow occurred while pushing result of Arcsine OpCode.

SL_E273 Op Code Arccosine Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Arccosine OpCode.

SL_E274 Op Code Arccosine Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Arccosine OpCode.

SL_E275 Op Code Arccosine Stack Over
Flow

Stack over flow occurred while pushing result of Arccosine OpCode.

SL_E276 Op Code Arctangent Argument
AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
Arctangent OpCode.

SL_E277 Op Code Arctangent Argument
AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
Arctangent OpCode.

SL_E278 Op Code Arctangent Stack Over
Flow

Stack over flow occurred while pushing result of Arctangent OpCode.

SL_E279 Op Code Hyperbolic Sine
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
HyperbolicSine OpCode.

SL_E280 Op Code Hyperbolic Sine
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
HyperbolicSine OpCode.

SL_E281 Op Code Hyperbolic Sine Stack
Over Flow

Stack over flow occurred while pushing result of HyperbolicSine
OpCode.

SL_E282 Op Code Hyperbolic Cosine
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
HyperbolicCosine OpCode.

SL_E283 Op Code Hyperbolic Cosine
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
HyperbolicCosine OpCode.

Scanner Logic IDE Appendix D

107

Code Name Description
SL_E284 Op Code Hyperbolic Cosine

Stack Over Flow
Stack over flow occurred while pushing result of HyperbolicCosine
OpCode.

SL_E285 Op Code Hyperbolic Tangent
Argument AStack Under Flow

Stack under flow occurred while retrieving Literal Argument A for
HyperbolicTangent OpCode.

SL_E286 Op Code Hyperbolic Tangent
Argument AInvalid Literal

Argument A on stack found to be non-valid Literal while executing
HyperbolicTangent OpCode.

SL_E287 Op Code Hyperbolic Tangent
Stack Over Flow

Stack over flow occurred while pushing result of HyperbolicTangent
OpCode.

SL_E288 Op Code Pre Inc Argument
AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
PreInc OpCode.

SL_E289 Op Code Pre Inc Argument
AInvalid Specifier

Argument A on stack found to be non-valid Specifier while executing
PreInc OpCode.

SL_E290 Op Code Pre Inc Stack Over Flow Stack over flow occurred while pushing result of PreInc OpCode.
SL_E291 Op Code Post Inc Argument

AStack Under Flow
Stack under flow occurred while retrieving Specifier Argument A for
PostInc OpCode.

SL_E292 Op Code Post Inc Argument
AInvalid Specifier

Argument A on stack found to be non-valid Specifier while executing
PostInc OpCode.

SL_E293 Op Code Post Inc Stack Over
Flow

Stack over flow occurred while pushing result of PostInc OpCode.

SL_E294 Op Code Pre Dec Argument
AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
PreDec OpCode.

SL_E295 Op Code Pre Dec Argument
AInvalid Specifier

Argument A on stack found to be non-valid Specifier while executing
PreDec OpCode.

SL_E296 Op Code Pre Dec Stack Over
Flow

Stack over flow occurred while pushing result of PreDec OpCode.

SL_E297 Op Code Post Dec Argument
AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
PostDec OpCode.

SL_E298 Op Code Post Dec Argument
AInvalid Specifier

Argument A on stack found to be non-valid Specifier while executing
PostDec OpCode.

SL_E299 Op Code Post Dec Stack Over
Flow

Stack over flow occurred while pushing result of PostDec OpCode.

SL_E300 Op Code Rand Stack Over Flow Stack over flow occurred while pushing result of Rand OpCode.
SL_E301 Op Code Push Constant Error

Loading Operand
Error loading Integer operand while executing Push_Constant
OpCode.

SL_E302 Op Code Push Constant Invalid
Constant Index Operand

Invalid Integer Constant Index Operand while executing
Push_Constant OpCode.

SL_E303 Op Code Push Constant Stack
Over Flow

Stack over flow occurred while pushing result of Push_Constant
OpCode.

SL_E304 Op Code Store Dup Argument
AStack Under Flow

Stack under flow occurred while retrieving Specifier Argument A for
StoreDup OpCode.

SL_E305 Op Code Store Dup Argument
AInvalid Specifier

Argument A on stack found to be non-valid specifier while executing
StoreDup OpCode.

SL_E306 Op Code Store Dup Argument
BStack Under Flow

Stack under flow occurred while retrieving literal Argument B for
StoreDup OpCode.

Appendix D Scanner Logic IDE

108

Code Name Description
SL_E307 Op Code Store Dup Argument

BInvalid Literal
Argument B on stack found to be non-valid literal word while
executing StoreDup OpCode.

SL_E308 Op Code Store Dup Invalid
RScode

Attempt to StoreDup to invalid Resource Specifier code

SL_E309 Op Code Store Dup Specifier Not
AProperty

Invalid attempt to StoreDup a value to a resource specifier that is not
a property.

SL_E310 Op Code Store Dup Specifier Not
Writable

Invalid attempt to StoreDup to a resource specifier that is read only.

SL_E311 Op Code Store Dup Invalid Asset
Index

Internal error while executing StoreDup OpCode returned invalid LM
Asset index.

SL_E312 Op Code Store Dup Internal
Store Dup Error

Internal error occurred while writing property during the execution of
the StoreDup OpCode.

SL_E313 Op Code Store Dup
Incompatible Data Type

Internal error while executing StoreDup OpCode returned unexpected
error.

SL_E314 Op Code Store Dup Unexpected
Error Result

Internal error while executing StoreDup OpCode returned unexpected
error.

SL_E315 Op Code Store Dup Stack Over
Flow

Stack over flow occurred while pushing duplicate argument within
StoreDup OpCode.

SL_E316 Op Code Swap Argument AStack
Under Flow

Stack under flow occurred while retrieving Argument A for Swap
OpCode.

SL_E317 Op Code Swap Argument BStack
Under Flow

Stack under flow occurred while retrieving Argument B for Swap
OpCode.

SL_E318 Op Code Swap Argument BStack
Over Flow

Stack over flow occurred while pushing Argument B within Swap
OpCode.

SL_E319 Op Code Swap Argument AStack
Over Flow

Stack over flow occurred while pushing Argument A within Swap
OpCode.

SL_E320 Op Code Cast BOOL Argument
AStack Under Flow

Stack under flow occurred while retrieving Argument A for Cast Bool
OpCode.

SL_E321 Op Code Cast BOOL
Incompatible Data Type

Attempting to cast Incompatible Data Type for Cast Bool OpCode.

SL_E322 Op Code Cast BOOL Argument
AStack Over Flow

Stack over flow occurred while pushing Argument A within Cast Bool
OpCode.

SL_E323 Op Code Cast UINT Argument
AStack Under Flow

Stack under flow occurred while retrieving Argument A for Cast UINT
OpCode.

SL_E324 Op Code Cast UINT Incompatible
Data Type

Attempting to cast Incompatible Data Type for Cast UINT OpCode.

SL_E325 Op Code Cast UINT Argument
AStack Over Flow

Stack over flow occurred while pushing Argument A within Cast UINT
OpCode.

WARRANTY - LIMITATION OF LIABILITY: Seller warrants only title to the products, software, supplies and
materials and that, except as to software, the same are free from defects in workmanship
and materials for a period of one (1) year from the date of delivery. Seller does not warranty
that software is free from error or that software will run in an uninterrupted fashion. Seller
provides all software "as is." THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, OF
MERCHANTABILITY, FITNESS, OR OTHERWISE WHICH EXTEND BEYOND THOSE
STATED IN THE IMMEDIATELY PRECEDING SENTENCE. Seller's liability and Buyer's
exclusive remedy in any case of action (whether in contract, tort, breach of warranty or
otherwise) arising out of the sale or use of any products, software, supplies, or materials is
expressly limited to the replacement of such products, software, supplies, or materials on
their return to Seller or, at Seller's option, to the allowance to the customer of credit for the
cost of such items. In no event shall Seller be liable for special, incidental, indirect, punitive
or consequential damages. Seller does not warrant in any way products, software, supplies
and materials not manufactured by Seller, and such will be sold only with the warranties that
are given by the manufacturer thereof. Seller will pass only through to its purchaser of such
items the warranty granted to it by the manufacturer.

	Cover
	Important Information
	Table of Contents
	Section 1—Introduction
	About the Scanner Logic IDE
	Dowloading and Installing Scanner Logic IDE
	Installation Requirements

	Section 2—Navigating the Interface
	Overview
	IDE Layout
	Program Information
	Resources
	Parameter Grids
	Adding and Modifying Resources
	Configuration and Maintenance Registers
	Holding Registers
	Accumulation Registers
	Working Registers

	Results Section
	Find Results
	Error List
	Breakpoints

	Menu Structure
	Toolbars

	Document Outline
	Status Bar
	The Editor
	Starting A New Script File
	Saving a Script File
	Opening a Script File
	File Auto Recovery
	Program Structure
	Program Information Region
	Program Declarations Region
	Program Code Region
	System Declaration Region
	Subroutine Region

	Editor Tools and Features
	Code Navigation Selectors
	Margin Indicators
	Edit Functions
	Syntax Parser
	Quick Information Tips
	Auto-Completion Lists
	Member Lists
	Vertical Split

	SCANNER LOGIC SCRIPT COMPILER
	Target Platform
	Changing the Target Platform
	Target Platform Properties

	Compiling a Scanner Logic Program
	Program Build Process
	The SLBIN File Format

	Logic Script Error Types
	Parser Errors
	Compiler Errors
	Runtime Errors

	Section 3—Managing Device Connections
	Creating a New Connection with IP Address and Port Known
	Creating a New Connection with Unknown IP Address
	Removing Device Connection(s)
	Installing a Scanner Logic Program on a Scanner
	Uploading a Program to a Scanner via the IDE
	Uploading a Program to a Scanner via the Web Interface
	Downloading a Program from a Scanner via the IDE
	Downloading a Program from a Scanner via the Web Interface
	Uninstalling a Program from the Scanner via the IDE
	Uninstalling a Program from the Scanner via the Web Interface

	Section 4—Using the Program
	Script Terminology
	Tutorial: Creating a Simple Program
	Problem
	Assumptions
	Scanner 3100 Inputs/Outputs Setup
	Program Design
	Define States and Transition Conditions
	Define Input and Output Resources
	Define Input and Output Registers
	Plan Updating of Calculated Values
	Plan State Entry and Exit Actions
	Define Interface to Program Variables

	Coding the Program
	Adding Program Information
	Adding Register Input Resources
	Adding Analog PID Controller
	Adding Alarm Resources
	Adding Digital Output Resource
	Adding Configuration Registers
	Adding Holding Registers
	Adding User Program Code in States and Subroutines
	Adding User HMI Fields

	Section 5—Debugging Scripts
	Starting a Debug Session
	Reviewing Device Connections
	Selecting Target Platform and Device Connection
	Debug Session Start Sequence
	Debug Mode Windows Layout

	Script Execution Status
	Watch Tree
	System Load Charts
	Debug Status Bar
	Stepping through Program Code
	Debug Commands
	Run
	Step
	Break All
	Restart
	Go To Current Execution Line

	Breakpoints
	Stop Debugging

	Appendix A—Other Programs
	Downloading and Installing ScanFlash

	Appendix B—Sample Program Solution
	Appendix C—Parser Error Messages
	Appendix D—Runtime Error Codes

